BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24384372)

  • 1. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices.
    Lepeltier E; Bourgaux C; Couvreur P
    Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles.
    Lepeltier E; Bourgaux C; Amenitsch H; Rosilio V; Lepetre-Mouelhi S; Zouhiri F; Desmaële D; Couvreur P
    Eur J Pharm Biopharm; 2015 Oct; 96():89-95. PubMed ID: 26210010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.
    Beck-Broichsitter M
    Int J Pharm; 2016 Sep; 511(1):262-266. PubMed ID: 27418569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced dissolution performance of curcumin with the use of supersaturatable formulations.
    Gosangari S; Dyakonov T
    Pharm Dev Technol; 2013; 18(2):475-80. PubMed ID: 22881446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles via nanoprecipitation process.
    Minost A; Delaveau J; Bolzinger MA; Fessi H; Elaissari A
    Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):250-8. PubMed ID: 22845041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoprecipitation process: From encapsulation to drug delivery.
    Martínez Rivas CJ; Tarhini M; Badri W; Miladi K; Greige-Gerges H; Nazari QA; Galindo Rodríguez SA; Román RÁ; Fessi H; Elaissari A
    Int J Pharm; 2017 Oct; 532(1):66-81. PubMed ID: 28801107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications.
    Zafar N; Fessi H; Elaissari A
    Int J Pharm; 2014 Jan; 461(1-2):351-66. PubMed ID: 24342710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the "ouzo region" upon drug loading.
    Beck-Broichsitter M; Rytting E; Lebhardt T; Wang X; Kissel T
    Eur J Pharm Sci; 2010 Oct; 41(2):244-53. PubMed ID: 20600881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling drug nanoparticle formation by rapid precipitation.
    D'Addio SM; Prud'homme RK
    Adv Drug Deliv Rev; 2011 May; 63(6):417-26. PubMed ID: 21565233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design.
    Vuddanda PR; Mishra A; Singh SK; Singh S
    Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles.
    Aschenbrenner E; Bley K; Koynov K; Makowski M; Kappl M; Landfester K; Weiss CK
    Langmuir; 2013 Jul; 29(28):8845-55. PubMed ID: 23777243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation.
    Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C
    Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles.
    Markwalter CE; Pagels RF; Wilson BK; Ristroph KD; Prud'homme RK
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel.
    Lundberg BB
    Int J Pharm; 2011 Apr; 408(1-2):208-12. PubMed ID: 21296135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells.
    Mattu C; Pabari RM; Boffito M; Sartori S; Ciardelli G; Ramtoola Z
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):463-72. PubMed ID: 23916461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent selection causes remarkable shifts of the "Ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.
    Beck-Broichsitter M; Nicolas J; Couvreur P
    Nanoscale; 2015; 7(20):9215-21. PubMed ID: 25924854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method.
    Fang RH; Aryal S; Hu CM; Zhang L
    Langmuir; 2010 Nov; 26(22):16958-62. PubMed ID: 20961057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid-Drug Conjugate for Enhancing Drug Delivery.
    Irby D; Du C; Li F
    Mol Pharm; 2017 May; 14(5):1325-1338. PubMed ID: 28080053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method.
    Nabi-Meibodi M; Vatanara A; Najafabadi AR; Rouini MR; Ramezani V; Gilani K; Etemadzadeh SM; Azadmanesh K
    Colloids Surf B Biointerfaces; 2013 Dec; 112():408-14. PubMed ID: 24036624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.