These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 24384372)
1. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices. Lepeltier E; Bourgaux C; Couvreur P Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372 [TBL] [Abstract][Full Text] [Related]
2. Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles. Lepeltier E; Bourgaux C; Amenitsch H; Rosilio V; Lepetre-Mouelhi S; Zouhiri F; Desmaële D; Couvreur P Eur J Pharm Biopharm; 2015 Oct; 96():89-95. PubMed ID: 26210010 [TBL] [Abstract][Full Text] [Related]
3. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles. Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117 [TBL] [Abstract][Full Text] [Related]
4. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Beck-Broichsitter M Int J Pharm; 2016 Sep; 511(1):262-266. PubMed ID: 27418569 [TBL] [Abstract][Full Text] [Related]
5. Enhanced dissolution performance of curcumin with the use of supersaturatable formulations. Gosangari S; Dyakonov T Pharm Dev Technol; 2013; 18(2):475-80. PubMed ID: 22881446 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticles via nanoprecipitation process. Minost A; Delaveau J; Bolzinger MA; Fessi H; Elaissari A Recent Pat Drug Deliv Formul; 2012 Dec; 6(3):250-8. PubMed ID: 22845041 [TBL] [Abstract][Full Text] [Related]
7. Nanoprecipitation process: From encapsulation to drug delivery. Martínez Rivas CJ; Tarhini M; Badri W; Miladi K; Greige-Gerges H; Nazari QA; Galindo Rodríguez SA; Román RÁ; Fessi H; Elaissari A Int J Pharm; 2017 Oct; 532(1):66-81. PubMed ID: 28801107 [TBL] [Abstract][Full Text] [Related]
8. Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications. Zafar N; Fessi H; Elaissari A Int J Pharm; 2014 Jan; 461(1-2):351-66. PubMed ID: 24342710 [TBL] [Abstract][Full Text] [Related]
9. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the "ouzo region" upon drug loading. Beck-Broichsitter M; Rytting E; Lebhardt T; Wang X; Kissel T Eur J Pharm Sci; 2010 Oct; 41(2):244-53. PubMed ID: 20600881 [TBL] [Abstract][Full Text] [Related]
10. Controlling drug nanoparticle formation by rapid precipitation. D'Addio SM; Prud'homme RK Adv Drug Deliv Rev; 2011 May; 63(6):417-26. PubMed ID: 21565233 [TBL] [Abstract][Full Text] [Related]
11. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design. Vuddanda PR; Mishra A; Singh SK; Singh S Pharm Dev Technol; 2015; 20(5):579-87. PubMed ID: 24831535 [TBL] [Abstract][Full Text] [Related]
12. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. Aschenbrenner E; Bley K; Koynov K; Makowski M; Kappl M; Landfester K; Weiss CK Langmuir; 2013 Jul; 29(28):8845-55. PubMed ID: 23777243 [TBL] [Abstract][Full Text] [Related]
13. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282 [TBL] [Abstract][Full Text] [Related]
14. Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles. Markwalter CE; Pagels RF; Wilson BK; Ristroph KD; Prud'homme RK J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663705 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Lundberg BB Int J Pharm; 2011 Apr; 408(1-2):208-12. PubMed ID: 21296135 [TBL] [Abstract][Full Text] [Related]
16. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells. Mattu C; Pabari RM; Boffito M; Sartori S; Ciardelli G; Ramtoola Z Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):463-72. PubMed ID: 23916461 [TBL] [Abstract][Full Text] [Related]
17. Solvent selection causes remarkable shifts of the "Ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Beck-Broichsitter M; Nicolas J; Couvreur P Nanoscale; 2015; 7(20):9215-21. PubMed ID: 25924854 [TBL] [Abstract][Full Text] [Related]
18. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Fang RH; Aryal S; Hu CM; Zhang L Langmuir; 2010 Nov; 26(22):16958-62. PubMed ID: 20961057 [TBL] [Abstract][Full Text] [Related]
19. Lipid-Drug Conjugate for Enhancing Drug Delivery. Irby D; Du C; Li F Mol Pharm; 2017 May; 14(5):1325-1338. PubMed ID: 28080053 [TBL] [Abstract][Full Text] [Related]
20. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Nabi-Meibodi M; Vatanara A; Najafabadi AR; Rouini MR; Ramezani V; Gilani K; Etemadzadeh SM; Azadmanesh K Colloids Surf B Biointerfaces; 2013 Dec; 112():408-14. PubMed ID: 24036624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]