These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 24384821)
1. Global gene expression responses to waterlogging in leaves of rape seedlings. Lee YH; Kim KS; Jang YS; Hwang JH; Lee DH; Choi IH Plant Cell Rep; 2014 Feb; 33(2):289-99. PubMed ID: 24384821 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. Cao M; Zheng L; Li J; Mao Y; Zhang R; Niu X; Geng M; Zhang X; Huang W; Luo K; Chen Y PLoS One; 2022; 17(1):e0261086. PubMed ID: 35061680 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Albert B; Le Cahérec F; Niogret MF; Faes P; Avice JC; Leport L; Bouchereau A Planta; 2012 Aug; 236(2):659-76. PubMed ID: 22526495 [TBL] [Abstract][Full Text] [Related]
4. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress. Zhang Y; Kong X; Dai J; Luo Z; Li Z; Lu H; Xu S; Tang W; Zhang D; Li W; Xin C; Dong H PLoS One; 2017; 12(9):e0185075. PubMed ID: 28953908 [TBL] [Abstract][Full Text] [Related]
5. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF. Yang L; Ye C; Zhao Y; Cheng X; Wang Y; Jiang YQ; Yang B Planta; 2018 Jun; 247(6):1323-1338. PubMed ID: 29511814 [TBL] [Abstract][Full Text] [Related]
6. Proteome Changes Reveal the Protective Roles of Exogenous Citric Acid in Alleviating Cu Toxicity in Ju YH; Roy SK; Roy Choudhury A; Kwon SJ; Choi JY; Rahman MA; Katsube-Tanaka T; Shiraiwa T; Lee MS; Cho K; Woo SH Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070927 [TBL] [Abstract][Full Text] [Related]
7. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Kazemi Oskuei B; Yin X; Hashiguchi A; Bandehagh A; Komatsu S Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1167-1177. PubMed ID: 28666670 [TBL] [Abstract][Full Text] [Related]
9. Physiological and Transcriptional Responses of Industrial Rapeseed ( Wang J; Jiao J; Zhou M; Jin Z; Yu Y; Liang M Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717503 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of antioxidant system response in Styrax tonkinensis seedlings under flood-drought abrupt alternation. Chen H; Han C; Cui L; Liu Z; Yu F BMC Plant Biol; 2024 May; 24(1):413. PubMed ID: 38760721 [TBL] [Abstract][Full Text] [Related]
11. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Christianson JA; Llewellyn DJ; Dennis ES; Wilson IW Plant Cell Physiol; 2010 Jan; 51(1):21-37. PubMed ID: 19923201 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Koeslin-Findeklee F; Rizi VS; Becker MA; Parra-Londono S; Arif M; Balazadeh S; Mueller-Roeber B; Kunze R; Horst WJ Plant Sci; 2015 Apr; 233():174-185. PubMed ID: 25711825 [TBL] [Abstract][Full Text] [Related]
14. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Men S; Chen H; Chen S; Zheng S; Shen X; Wang C; Yang Z; Liu D Sci Rep; 2020 Jun; 10(1):10201. PubMed ID: 32576948 [TBL] [Abstract][Full Text] [Related]
15. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals. Koeslin-Findeklee F; Becker MA; van der Graaff E; Roitsch T; Horst WJ J Exp Bot; 2015 Jul; 66(13):3669-81. PubMed ID: 25944925 [TBL] [Abstract][Full Text] [Related]
16. Physiological and phenotypic characterization of diverse Camelina sativa lines in response to waterlogging. Stasnik P; Großkinsky DK; Jonak C Plant Physiol Biochem; 2022 Jul; 183():120-127. PubMed ID: 35580367 [TBL] [Abstract][Full Text] [Related]
17. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Zhong H; Guo QQ; Chen L; Ren F; Wang QQ; Zheng Y; Li XB Plant Cell Rep; 2012 Nov; 31(11):1991-2003. PubMed ID: 22801866 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. Wang F; Zhou Z; Liu X; Zhu L; Guo B; Lv C; Zhu J; Chen ZH; Xu R BMC Plant Biol; 2024 May; 24(1):385. PubMed ID: 38724918 [TBL] [Abstract][Full Text] [Related]
19. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). Sairam RK; Dharmar K; Chinnusamy V; Meena RC J Plant Physiol; 2009 Apr; 166(6):602-16. PubMed ID: 18947901 [TBL] [Abstract][Full Text] [Related]
20. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Hong B; Zhou B; Peng Z; Yao M; Wu J; Wu X; Guan C; Guan M Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37046988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]