These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 24384843)
1. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Wang N; Wang D; Li M; Shi J; Li C Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843 [TBL] [Abstract][Full Text] [Related]
2. Branched WO3 nanosheet array with layered C3 N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Hou Y; Zuo F; Dagg AP; Liu J; Feng P Adv Mater; 2014 Aug; 26(29):5043-9. PubMed ID: 24848321 [TBL] [Abstract][Full Text] [Related]
3. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting. Ronconi F; Syrgiannis Z; Bonasera A; Prato M; Argazzi R; Caramori S; Cristino V; Bignozzi CA J Am Chem Soc; 2015 Apr; 137(14):4630-3. PubMed ID: 25837588 [TBL] [Abstract][Full Text] [Related]
4. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Zhu T; Chong MN; Chan ES ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst. Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494 [TBL] [Abstract][Full Text] [Related]
6. Discovery of Overcoating Metal Oxides on Photoelectrode for Water Splitting by Automated Screening. Saito R; Miseki Y; Nini W; Sayama K ACS Comb Sci; 2015 Oct; 17(10):592-9. PubMed ID: 26325162 [TBL] [Abstract][Full Text] [Related]
7. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid. Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939 [TBL] [Abstract][Full Text] [Related]
8. Rational and scalable fabrication of high-quality WO3/CdS core/shell nanowire arrays for photoanodes toward enhanced charge separation and transport under visible light. Li H; Zhou Y; Chen L; Luo W; Xu Q; Wang X; Xiao M; Zou Z Nanoscale; 2013 Dec; 5(23):11933-9. PubMed ID: 24129900 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074 [TBL] [Abstract][Full Text] [Related]
10. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation. Reichert R; Zambrzycki C; Jusys Z; Behm RJ ChemSusChem; 2015 Nov; 8(21):3677-87. PubMed ID: 26382643 [TBL] [Abstract][Full Text] [Related]
11. WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing. Zhang X; Huo K; Peng X; Xu R; Li P; Chen R; Zheng G; Wu Z; Chu PK Chem Commun (Camb); 2013 Aug; 49(63):7091-3. PubMed ID: 23770651 [TBL] [Abstract][Full Text] [Related]
12. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
13. Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol. Li B; Chen Y; Peng A; Chen X; Chen X J Colloid Interface Sci; 2019 Mar; 537():528-535. PubMed ID: 30469120 [TBL] [Abstract][Full Text] [Related]
14. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Solarska R; Jurczakowski R; Augustynski J Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176 [TBL] [Abstract][Full Text] [Related]
15. A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine. Sun B; Zhang K; Chen L; Guo L; Ai S Biosens Bioelectron; 2013 Jun; 44():48-51. PubMed ID: 23391706 [TBL] [Abstract][Full Text] [Related]
16. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting. Gonçalves RH; Leite LD; Leite ER ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181 [TBL] [Abstract][Full Text] [Related]
17. Strontium adsorption on tantalum-doped hexagonal tungsten oxide. Li X; Mu W; Xie X; Liu B; Tang H; Zhou G; Wei H; Jian Y; Luo S J Hazard Mater; 2014 Jan; 264():386-94. PubMed ID: 24316810 [TBL] [Abstract][Full Text] [Related]
18. Comment on "Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light". Leng W Environ Sci Technol; 2011 Apr; 45(7):3181-2; author reply 3183-4. PubMed ID: 21391657 [No Abstract] [Full Text] [Related]
19. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles. Miyauchi M Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850 [TBL] [Abstract][Full Text] [Related]
20. Interfacing Photosynthetic Membrane Protein with Mesoporous WO Pang H; Zhao G; Liu G; Zhang H; Hai X; Wang S; Song H; Ye J Small; 2018 May; 14(19):e1800104. PubMed ID: 29633500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]