These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24386247)

  • 1. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.
    Lambers FM; Bouman AR; Rimnac CM; Hernandez CJ
    PLoS One; 2013; 8(12):e83662. PubMed ID: 24386247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative relationships between microdamage and cancellous bone strength and stiffness.
    Hernandez CJ; Lambers FM; Widjaja J; Chapa C; Rimnac CM
    Bone; 2014 Sep; 66():205-13. PubMed ID: 24928495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-enzymatic glycation alters microdamage formation in human cancellous bone.
    Tang SY; Vashishth D
    Bone; 2010 Jan; 46(1):148-54. PubMed ID: 19747573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression.
    Slyfield CR; Tkachenko EV; Fischer SE; Ehlert KM; Yi IH; Jekir MG; O'Brien RG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jun; 50(6):1281-7. PubMed ID: 22426306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading.
    Kummari SR; Davis AJ; Vega LA; Ahn N; Cassinelli EH; Hernandez CJ
    Calcif Tissue Int; 2009 Aug; 85(2):127-33. PubMed ID: 19488669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties.
    Li ZC; Dai LY; Jiang LS; Qiu S
    Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The characterization of bovine compact bone fatigue damage using terahertz spectroscopy.
    Meng X; Qin Q; Qu C; Kang K; Wang Z; Qiu W; Qu C; Fu D
    Z Med Phys; 2023 May; 33(2):192-202. PubMed ID: 35764468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of trabecular microarchitecture in the formation, accumulation, and morphology of microdamage in human cancellous bone.
    Karim L; Vashishth D
    J Orthop Res; 2011 Nov; 29(11):1739-44. PubMed ID: 21538510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
    Karim L; Vashishth D
    PLoS One; 2012; 7(4):e35047. PubMed ID: 22514706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Young's modulus repeatability assessment using cycling compression loading on cancellous bone.
    Guérard S; Chevalier Y; Moreschi H; Defontaine M; Callé S; Mitton D
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1113-7. PubMed ID: 22292210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributions of Microdamage Are Altered Between Trabecular Rods and Plates in Cancellous Bone From Men With Type 2 Diabetes Mellitus.
    Sacher SE; Hunt HB; Lekkala S; Lopez KA; Potts J; Heilbronner AK; Stein EM; Hernandez CJ; Donnelly E
    J Bone Miner Res; 2022 Apr; 37(4):740-752. PubMed ID: 35064941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of Young's modulus at various sampling points in a human lumbar spine vertebral body.
    Ogurkowska MB; Błaszczyk A
    Spine J; 2020 Nov; 20(11):1861-1875. PubMed ID: 32592901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.