These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Kinetics and mechanism of chloride based chlorine dioxide generation process from acidic sodium chlorate. Deshwal BR; Lee HK J Hazard Mater; 2004 May; 108(3):173-82. PubMed ID: 15120870 [TBL] [Abstract][Full Text] [Related]
7. Effects of ozonation on the speciation of dissolved iodine in artificial seawater. Sherrill J; Whitaker BR; Wong GT J Zoo Wildl Med; 2004 Sep; 35(3):347-55. PubMed ID: 15526890 [TBL] [Abstract][Full Text] [Related]
8. The multiple roles of chlorite on the concentrations of radicals and ozone and formation of chlorate during UV photolysis of free chlorine. Zhao J; Shang C; Zhang X; Yang X; Yin R Water Res; 2021 Feb; 190():116680. PubMed ID: 33285457 [TBL] [Abstract][Full Text] [Related]
10. Iodine emission from the reactive uptake of ozone to simulated seawater. Schneider SR; Lakey PSJ; Shiraiwa M; Abbatt JPD Environ Sci Process Impacts; 2023 Feb; 25(2):254-263. PubMed ID: 35838601 [TBL] [Abstract][Full Text] [Related]
11. Compatible Kinetic Model for Quantitative Description of Dual-Clock Behavior of the Complex Thiourea-Iodate Reaction. Csekő G; Gao Q; Horváth AK Inorg Chem; 2023 Jan; 62(3):1192-1201. PubMed ID: 36630681 [TBL] [Abstract][Full Text] [Related]
12. Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. Pillar-Little EA; Guzman MI; Rodriguez JM Environ Sci Technol; 2013 Oct; 47(19):10971-9. PubMed ID: 23987087 [TBL] [Abstract][Full Text] [Related]
13. A possible candidate to be classified as an autocatalysis-driven clock reaction: kinetics of the pentathionate-iodate reaction. Xu L; Horváth AK J Phys Chem A; 2014 Aug; 118(32):6171-80. PubMed ID: 25068832 [TBL] [Abstract][Full Text] [Related]
14. Modification of ozone deposition and I2 emissions at the air-aqueous interface by dissolved organic carbon of marine origin. Shaw MD; Carpenter LJ Environ Sci Technol; 2013 Oct; 47(19):10947-54. PubMed ID: 24004338 [TBL] [Abstract][Full Text] [Related]
15. Photochemical oxidation of chloride ion by ozone in acid aqueous solution. Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems. Shin J; Lee Y; von Gunten U Water Res; 2020 Jul; 179():115852. PubMed ID: 32417560 [TBL] [Abstract][Full Text] [Related]
17. [Reduction of chlorates by acinetobacter thermotoleranticus C-1 in the presence of chromate ions]. Smirnova GF; Podgorskiĭ VS; Muchnik FV Mikrobiol Z; 2010; 72(5):14-9. PubMed ID: 21117292 [TBL] [Abstract][Full Text] [Related]
18. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Lutze HV; Kerlin N; Schmidt TC Water Res; 2015 Apr; 72():349-60. PubMed ID: 25455043 [TBL] [Abstract][Full Text] [Related]
19. Determination of chlorate at low microgram/l levels by ion-chromatography with postcolumn reaction. Nowack B; von Gunten U J Chromatogr A; 1999 Jul; 849(1):209-15. PubMed ID: 10444845 [TBL] [Abstract][Full Text] [Related]
20. Iodine oxidation by hydrogen peroxide and Bray-Liebhafsky oscillating reaction: effect of the temperature. Schmitz G Phys Chem Chem Phys; 2011 Apr; 13(15):7102-11. PubMed ID: 21409217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]