These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24386289)

  • 21. PPI-IRO: a two-stage method for protein-protein interaction extraction based on interaction relation ontology.
    Li CX; Chen P; Wang RJ; Wang XJ; Su YR; Li J
    Int J Data Min Bioinform; 2014; 10(1):98-119. PubMed ID: 25757257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient prediction of co-complexed proteins based on coevolution.
    de Vienne DM; Azé J
    PLoS One; 2012; 7(11):e48728. PubMed ID: 23152796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.
    Srihari S; Yong CH; Patil A; Wong L
    FEBS Lett; 2015 Sep; 589(19 Pt A):2590-602. PubMed ID: 25913176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying protein complexes by reducing noise in interaction networks.
    Liao B; Fu X; Cai L; Chen H
    Protein Pept Lett; 2014 Jul; 21(7):688-95. PubMed ID: 24654850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex discovery from weighted PPI networks.
    Liu G; Wong L; Chua HN
    Bioinformatics; 2009 Aug; 25(15):1891-7. PubMed ID: 19435747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization.
    Wu Q; Wang Z; Li C; Ye Y; Li Y; Sun N
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S9. PubMed ID: 25708164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ConnectedAlign: a PPI network alignment method for identifying conserved protein complexes across multiple species.
    Gao J; Song B; Hu X; Yan F; Wang J
    BMC Bioinformatics; 2018 Aug; 19(Suppl 9):286. PubMed ID: 30367584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting temporal protein complexes from dynamic protein-protein interaction networks.
    Ou-Yang L; Dai DQ; Li XL; Wu M; Zhang XF; Yang P
    BMC Bioinformatics; 2014 Oct; 15(1):335. PubMed ID: 25282536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of protein complexes from multiple protein interaction networks using graph embedding.
    Liu X; Yang Z; Sang S; Lin H; Wang J; Xu B
    Artif Intell Med; 2019 May; 96():107-115. PubMed ID: 31164203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X; Liang J
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28737728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovering protein complexes in protein interaction networks via exploring the weak ties effect.
    Ma X; Gao L
    BMC Syst Biol; 2012; 6 Suppl 1(Suppl 1):S6. PubMed ID: 23046740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale protein-protein interactions detection by integrating big biosensing data with computational model.
    You ZH; Li S; Gao X; Luo X; Ji Z
    Biomed Res Int; 2014; 2014():598129. PubMed ID: 25215285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L; Chan KC
    BMC Bioinformatics; 2015 May; 16():174. PubMed ID: 26013799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustering algorithms for detecting functional modules in protein interaction networks.
    Gao L; Sun PG; Song J
    J Bioinform Comput Biol; 2009 Feb; 7(1):217-42. PubMed ID: 19226668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Chen CT; Peng HP; Jian JW; Tsai KC; Chang JY; Yang EW; Chen JB; Ho SY; Hsu WL; Yang AS
    PLoS One; 2012; 7(6):e37706. PubMed ID: 22701576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating PPI datasets with the PPI data from biomedical literature for protein complex detection.
    Yang Z; Yu F; Lin H; Wang J
    BMC Med Genomics; 2014; 7 Suppl 2(Suppl 2):S3. PubMed ID: 25350598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.