These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24386343)

  • 1. BOBA FRET: bootstrap-based analysis of single-molecule FRET data.
    König SL; Hadzic M; Fiorini E; Börner R; Kowerko D; Blanckenhorn WU; Sigel RK
    PLoS One; 2013; 8(12):e84157. PubMed ID: 24386343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule FRET characterization of large ribozyme folding.
    Cardo L; Karunatilaka KS; Rueda D; Sigel RK
    Methods Mol Biol; 2012; 848():227-51. PubMed ID: 22315073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable State Identification and State Transition Detection in Fluorescence Intensity-Based Single-Molecule Förster Resonance Energy-Transfer Data.
    Hadzic MCAS; Börner R; König SLB; Kowerko D; Sigel RKO
    J Phys Chem B; 2018 Jun; 122(23):6134-6147. PubMed ID: 29737844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning.
    Thomsen J; Sletfjerding MB; Jensen SB; Stella S; Paul B; Malle MG; Montoya G; Petersen TC; Hatzakis NS
    Elife; 2020 Nov; 9():. PubMed ID: 33138911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer.
    Hadzic MCAS; Sigel RKO; Börner R
    Methods Mol Biol; 2022; 2439():173-190. PubMed ID: 35226322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns.
    Kowerko D; König SL; Skilandat M; Kruschel D; Hadzic MC; Cardo L; Sigel RK
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3403-8. PubMed ID: 25737541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.
    Ingargiola A; Lerner E; Chung S; Weiss S; Michalet X
    PLoS One; 2016; 11(8):e0160716. PubMed ID: 27532626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer.
    Holmstrom ED; Nesbitt DJ
    Annu Rev Phys Chem; 2016 May; 67():441-65. PubMed ID: 27215819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Two-dimensional Spatiotemporal Analysis of Mobile Single-molecule FRET Probes.
    Schrangl L; Göhring J; Kellner F; Huppa JB; Schütz GJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34897275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward automated denoising of single molecular Förster resonance energy transfer data.
    Lee HC; Lin BL; Chang WH; Tu IP
    J Biomed Opt; 2012 Jan; 17(1):011007. PubMed ID: 22352641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of camera-based single-molecule fluorescence experiments.
    Börner R; Kowerko D; Hadzic MCAS; König SLB; Ritter M; Sigel RKO
    PLoS One; 2018; 13(4):e0195277. PubMed ID: 29652886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of single molecule FRET transitions without trajectories.
    Schrangl L; Göhring J; Schütz GJ
    J Chem Phys; 2018 Mar; 148(12):123328. PubMed ID: 29604857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic subpopulations detected by single-molecule spectroscopy: fundamental property of functional nucleic acids or experimental artefact?
    König SL; Kowerko D; Sigel RK
    Chimia (Aarau); 2013; 67(4):240-3. PubMed ID: 23967697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.
    van de Meent JW; Bronson JE; Wiggins CH; Gonzalez RL
    Biophys J; 2014 Mar; 106(6):1327-37. PubMed ID: 24655508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-molecule FRET studies using multiparameter fluorescence detection.
    Sisamakis E; Valeri A; Kalinin S; Rothwell PJ; Seidel CA
    Methods Enzymol; 2010; 475():455-514. PubMed ID: 20627168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule analysis of Mss116-mediated group II intron folding.
    Karunatilaka KS; Solem A; Pyle AM; Rueda D
    Nature; 2010 Oct; 467(7318):935-9. PubMed ID: 20944626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET.
    van der Feltz C; Hoskins AA
    Methods; 2017 Aug; 125():45-54. PubMed ID: 28529063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Detection of Single DNA Molecules.
    Huang W; Wang Y; Wang Z
    J Fluoresc; 2015 Sep; 25(5):1267-77. PubMed ID: 26215080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining Dynamics of Membrane-Bound Pyrophosphatases by Experimental and Computational Single-Molecule FRET.
    Harborne SPD; Strauss J; Turku A; Watson MA; Tuma R; Harris SA; Goldman A
    Methods Enzymol; 2018; 607():93-130. PubMed ID: 30149870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.