These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24386539)

  • 1. Automated Reconstruction of Neural Trees Using Front Re-initialization.
    Mukherjee A; Stepanyants A
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8314():. PubMed ID: 24386539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Isotropic Fast Marching Methods on Cartesian Grids.
    Appia V; Yezzi A
    Comput Vis ECCV; 2010; 6316():71-83. PubMed ID: 25364784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.
    Zandt BJ; Losnegård A; Hodneland E; Veruki ML; Lundervold A; Hartveit E
    J Neurosci Methods; 2017 Mar; 279():101-118. PubMed ID: 28115187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FMST: an Automatic Neuron Tracing Method Based on Fast Marching and Minimum Spanning Tree.
    Yang J; Hao M; Liu X; Wan Z; Zhong N; Peng H
    Neuroinformatics; 2019 Apr; 17(2):185-196. PubMed ID: 30039210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust and Efficient Curve Skeletonization Algorithm for Tree-Like Objects Using Minimum Cost Paths.
    Jin D; Iyer KS; Chen C; Hoffman EA; Saha PK
    Pattern Recognit Lett; 2016 Jun; 76():32-40. PubMed ID: 27175043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of the optimal neuron traces in confocal microscopy images.
    Vasilkoski Z; Stepanyants A
    J Neurosci Methods; 2009 Mar; 178(1):197-204. PubMed ID: 19059434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accelerated threshold-based back-projection algorithm for compton camera image reconstruction.
    Mundy DW; Herman MG
    Med Phys; 2011 Jan; 38(1):15-22. PubMed ID: 21361170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Approach of Arc Skeletonization for Tree-Like Objects Using Minimum Cost Path.
    Jin D; Iyer KS; Hoffman EA; Saha PK
    Proc IAPR Int Conf Pattern Recogn; 2014 Aug; 2014():942-947. PubMed ID: 25621320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decision-Tree-Initialized Dendritic Neuron Model for Fast and Accurate Data Classification.
    Luo X; Wen X; Zhou M; Abusorrah A; Huang L
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4173-4183. PubMed ID: 33729951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Marching Tree: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions.
    Janson L; Schmerling E; Clark A; Pavone M
    Int J Rob Res; 2015 Jun; 34(7):883-921. PubMed ID: 27003958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Network Initialization With Decision Trees.
    Humbird KD; Peterson JL; Mcclarren RG
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1286-1295. PubMed ID: 30281498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetric fast marching schemes for better numerical isotropy.
    Appia V; Yezzi A
    IEEE Trans Pattern Anal Mach Intell; 2013 Sep; 35(9):2298-304. PubMed ID: 23868786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data.
    Hahn J; Bruder H; Rohkohl C; Allmendinger T; Stierstorfer K; Flohr T; Kachelrieß M
    Med Phys; 2017 Nov; 44(11):5795-5813. PubMed ID: 28801918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree.
    Wan Z; He Y; Hao M; Yang J; Zhong N
    BMC Bioinformatics; 2017 Mar; 18(1):197. PubMed ID: 28356056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified fast marching and level set method for medical image segmentation.
    Zhu F; Tian J
    J Xray Sci Technol; 2003 Jan; 11(4):193-204. PubMed ID: 22388290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling.
    Ming X; Li A; Wu J; Yan C; Ding W; Gong H; Zeng S; Liu Q
    PLoS One; 2013; 8(12):e84557. PubMed ID: 24391966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree.
    Xiao H; Peng H
    Bioinformatics; 2013 Jun; 29(11):1448-54. PubMed ID: 23603332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking.
    Liu S; Zhang D; Liu S; Feng D; Peng H; Cai W
    Neuroinformatics; 2016 Oct; 14(4):387-401. PubMed ID: 27184384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using flow information to support 3D vessel reconstruction from rotational angiography.
    Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ
    Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors.
    Türetken E; González G; Blum C; Fua P
    Neuroinformatics; 2011 Sep; 9(2-3):279-302. PubMed ID: 21573886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.