These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24386890)

  • 1. Amorphous cobalt hydroxide with superior pseudocapacitive performance.
    Li HB; Yu MH; Lu XH; Liu P; Liang Y; Xiao J; Tong YX; Yang GW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):745-9. PubMed ID: 24386890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials.
    Li HB; Yu MH; Wang FX; Liu P; Liang Y; Xiao J; Wang CX; Tong YX; Yang GW
    Nat Commun; 2013; 4():1894. PubMed ID: 23695688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances.
    Jiang W; Zhai S; Wei L; Yuan Y; Yu D; Wang L; Wei J; Chen Y
    Nanotechnology; 2015 Aug; 26(31):314003. PubMed ID: 26186042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Co(OH)
    Ulaganathan M; Maharjan MM; Yan Q; Aravindan V; Madhavi S
    Chem Asian J; 2017 Aug; 12(16):2127-2133. PubMed ID: 28594146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors.
    Zhang F; Zhu D; Chen X; Xu X; Yang Z; Zou C; Yang K; Huang S
    Phys Chem Chem Phys; 2014 Mar; 16(9):4186-92. PubMed ID: 24452101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous Ni-Co binary hydroxide with super-long cycle life and ultrahigh rate capability as asymmetric supercapacitors.
    Li H; Zhou X; Zhao P
    Nanotechnology; 2022 Nov; 34(6):. PubMed ID: 36356304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Electrochemical Route to Access Amorphous Co-Ni Hydroxide for Non-enzymatic Glucose Sensing.
    Li H; Zhang L; Mao Y; Wen C; Zhao P
    Nanoscale Res Lett; 2019 Apr; 14(1):135. PubMed ID: 30997590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal encapsulation of VO
    Zheng J; Zhang Y; Wang Q; Jiang H; Liu Y; Lv T; Meng C
    Dalton Trans; 2018 Jan; 47(2):452-464. PubMed ID: 29226286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.
    Gao YQ; Liu XY; Yang GW
    Nanoscale; 2016 Mar; 8(9):5015-23. PubMed ID: 26864279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-cobalt hydroxide: a positive electrode for supercapacitor applications.
    Vidhya MS; Ravi G; Yuvakkumar R; Velauthapillai D; Thambidurai M; Dang C; Saravanakumar B
    RSC Adv; 2020 May; 10(33):19410-19418. PubMed ID: 35515465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors.
    Wan L; Xiao J; Xiao F; Wang S
    ACS Appl Mater Interfaces; 2014 May; 6(10):7735-42. PubMed ID: 24755163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.
    Kim SK; Kim YK; Lee H; Lee SB; Park HS
    ChemSusChem; 2014 Apr; 7(4):1094-101. PubMed ID: 24678040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes.
    Liu XY; Gao YQ; Yang GW
    Nanoscale; 2016 Feb; 8(7):4227-35. PubMed ID: 26838964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosheet-based hierarchical Ni(2)(CO(3))(OH)(2) microspheres with weak crystallinity for high-performance supercapacitor.
    Zhu G; Xi C; Shen M; Bao C; Zhu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17208-14. PubMed ID: 25212382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity.
    Deng MJ; Huang FL; Sun IW; Tsai WT; Chang JK
    Nanotechnology; 2009 Apr; 20(17):175602. PubMed ID: 19420595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor.
    Dong X; Wang L; Wang D; Li C; Jin J
    Langmuir; 2012 Jan; 28(1):293-8. PubMed ID: 22124210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PolyHIPE Derived Freestanding 3D Carbon Foam for Cobalt Hydroxide Nanorods Based High Performance Supercapacitor.
    Patil UM; Ghorpade RV; Nam MS; Nalawade AC; Lee S; Han H; Jun SC
    Sci Rep; 2016 Oct; 6():35490. PubMed ID: 27762284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors.
    Nagaraju G; Raju GS; Ko YH; Yu JS
    Nanoscale; 2016 Jan; 8(2):812-25. PubMed ID: 26450829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.