BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2438703)

  • 1. Acetylcholine and the mammalian 'slow inward' current: a computer investigation.
    Egan TM; Noble SJ
    Proc R Soc Lond B Biol Sci; 1987 Apr; 230(1260):315-37. PubMed ID: 2438703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vagal control of sinoatrial rhythm: a mathematical model.
    Dokos S; Celler BG; Lovell NH
    J Theor Biol; 1996 Sep; 182(1):21-44. PubMed ID: 8917735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of DiFrancesco-Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity.
    Dokos S; Celler BG; Lovell NH
    Ann Biomed Eng; 1993; 21(4):321-35. PubMed ID: 8214817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of tertiapin-Q on responses of the sinoatrial pacemaker of the guinea-pig heart to vagal nerve stimulation and muscarinic agonists.
    Bolter CP; English DJ
    Exp Physiol; 2008 Jan; 93(1):53-63. PubMed ID: 17720744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node.
    Boyett MR; Kodama I; Honjo H; Arai A; Suzuki R; Toyama J
    Cardiovasc Res; 1995 Jun; 29(6):867-78. PubMed ID: 7656291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart.
    Sakmann B; Noma A; Trautwein W
    Nature; 1983 May 19-25; 303(5914):250-3. PubMed ID: 6302520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the vagally driven primary pacemaker.
    Bristow DG; Clark JW
    Am J Physiol; 1983 Jan; 244(1):H150-61. PubMed ID: 6295188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine modulates I(f) and IK(ACh) via different pathways in rabbit sino-atrial node cells.
    Renaudon B; Bois P; Bescond J; Lenfant J
    J Mol Cell Cardiol; 1997 Mar; 29(3):969-75. PubMed ID: 9152858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tertiapin-Q and ZD7288 on changes in sinoatrial pacemaker rhythm during vagal stimulation.
    Han SY; Bolter CP
    Auton Neurosci; 2015 Dec; 193():117-26. PubMed ID: 26549880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model.
    Demir SS; Clark JW; Giles WR
    Am J Physiol; 1999 Jun; 276(6):H2221-44. PubMed ID: 10362707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold effects of acetylcholine on primary pacemaker cells of the rabbit sino-atrial node.
    Shibata EF; Giles W; Pollack GH
    Proc R Soc Lond B Biol Sci; 1985 Jan; 223(1232):355-78. PubMed ID: 2858102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the transient inward current and slow inward currents in the sino-atrial node of the rabbit.
    Brown HF; Noble D; Noble SJ; Taupignon AI
    J Physiol; 1986 Jan; 370():299-315. PubMed ID: 2420976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vagal stimulation and applied acetylcholine on pacemaker potentials in the guinea-pig heart.
    Campbell GD; Edwards FR; Hirst GD; O'Shea JE
    J Physiol; 1989 Aug; 415():57-68. PubMed ID: 2640469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanism underlying muscarinic acetylcholine response in the rabbit sinoatrial node.
    Noma A; Kokubun S; Taniguchi J
    J Physiol (Paris); 1981 May; 77(9):1073-6. PubMed ID: 6286957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the chronotropic effect of acetylcholine on sinoatrial node cells.
    Zhang H; Holden AV; Noble D; Boyett MR
    J Cardiovasc Electrophysiol; 2002 May; 13(5):465-74. PubMed ID: 12030529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local cholinergic suppression of pacemaker activity in the rabbit sinoatrial node.
    Vinogradova TM; Fedorov VV; Yuzyuk TN; Zaitsev AV; Rosenshtraukh LV
    J Cardiovasc Pharmacol; 1998 Sep; 32(3):413-24. PubMed ID: 9733355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ionic currents underlying pacemaker activity in rabbit sino-atrial node: experimental results and computer simulations.
    Brown HF; Kimura J; Noble D; Noble SJ; Taupignon A
    Proc R Soc Lond B Biol Sci; 1984 Sep; 222(1228):329-47. PubMed ID: 6149555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large conductance Ca2+-activated K+ channels inhibit vagal acetylcholine release at the rabbit sinoatrial node.
    Kawada T; Akiyama T; Shimizu S; Kamiya A; Uemura K; Sata Y; Shirai M; Sugimachi M
    Auton Neurosci; 2010 Aug; 156(1-2):149-51. PubMed ID: 20435521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance.
    Ashton JL; Trew ML; LeGrice IJ; Paterson DJ; Paton JF; Gillis AM; Smaill BH
    J Physiol; 2019 Jul; 597(13):3297-3313. PubMed ID: 31087820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Investigation of pacemaker shift in the rabbit sinoatrial node using the optical mapping technique].
    Abramochkin DV; Kuz'min VS; Sukhova GS; Rozenshtraukh LV
    Biofizika; 2010; 55(3):500-6. PubMed ID: 20586331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.