These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 24387041)
1. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Sieber JR; Le HM; McInerney MJ Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041 [TBL] [Abstract][Full Text] [Related]
2. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. Schmidt A; Müller N; Schink B; Schleheck D PLoS One; 2013; 8(2):e56905. PubMed ID: 23468890 [TBL] [Abstract][Full Text] [Related]
3. Syntrophus aciditrophicus uses the same enzymes in a reversible manner to degrade and synthesize aromatic and alicyclic acids. James KL; Kung JW; Crable BR; Mouttaki H; Sieber JR; Nguyen HH; Yang Y; Xie Y; Erde J; Wofford NQ; Karr EA; Loo JA; Ogorzalek Loo RR; Gunsalus RP; McInerney MJ Environ Microbiol; 2019 May; 21(5):1833-1846. PubMed ID: 30895699 [TBL] [Abstract][Full Text] [Related]
4. Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Plugge CM; Jiang B; de Bok FA; Tsai C; Stams AJ Arch Microbiol; 2009 Jan; 191(1):55-61. PubMed ID: 18795263 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by "Syntrophus aciditrophicus" strain SB in syntrophic association with H(2)-using microorganisms. Elshahed MS; Bhupathiraju VK; Wofford NQ; Nanny MA; McInerney MJ Appl Environ Microbiol; 2001 Apr; 67(4):1728-38. PubMed ID: 11282627 [TBL] [Abstract][Full Text] [Related]
6. Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. de Bok FA; Luijten ML; Stams AJ Appl Environ Microbiol; 2002 Sep; 68(9):4247-52. PubMed ID: 12200272 [TBL] [Abstract][Full Text] [Related]
7. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Worm P; Stams AJM; Cheng X; Plugge CM Microbiology (Reading); 2011 Jan; 157(Pt 1):280-289. PubMed ID: 20884694 [TBL] [Abstract][Full Text] [Related]
8. Localization of the enzymes involved in H2 and formate metabolism in Syntrophospora bryantii. Dong X; Stams AJ Antonie Van Leeuwenhoek; 1995; 67(4):345-50. PubMed ID: 7574550 [TBL] [Abstract][Full Text] [Related]
9. Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. de Bok FA; Roze EH; Stams AJ Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):283-91. PubMed ID: 12448727 [TBL] [Abstract][Full Text] [Related]
10. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus. Schmidt A; Frensch M; Schleheck D; Schink B; Müller N PLoS One; 2014; 9(12):e115902. PubMed ID: 25536080 [TBL] [Abstract][Full Text] [Related]
11. Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms. Elshahed MS; McInerney MJ Appl Environ Microbiol; 2001 Dec; 67(12):5520-5. PubMed ID: 11722901 [TBL] [Abstract][Full Text] [Related]
12. The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Sieber JR; Sims DR; Han C; Kim E; Lykidis A; Lapidus AL; McDonnald E; Rohlin L; Culley DE; Gunsalus R; McInerney MJ Environ Microbiol; 2010 Aug; 12(8):2289-301. PubMed ID: 21966920 [TBL] [Abstract][Full Text] [Related]
13. The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. Nobu MK; Narihiro T; Hideyuki T; Qiu YL; Sekiguchi Y; Woyke T; Goodwin L; Davenport KW; Kamagata Y; Liu WT Environ Microbiol; 2015 Dec; 17(12):4861-72. PubMed ID: 24589017 [TBL] [Abstract][Full Text] [Related]
14. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH. Losey NA; Mus F; Peters JW; Le HM; McInerney MJ Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802265 [No Abstract] [Full Text] [Related]
15. Membrane Complexes of Crable BR; Sieber JR; Mao X; Alvarez-Cohen L; Gunsalus R; Ogorzalek Loo RR; Nguyen H; McInerney MJ Front Microbiol; 2016; 7():1795. PubMed ID: 27881975 [TBL] [Abstract][Full Text] [Related]
16. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. Montag D; Schink B Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097443 [TBL] [Abstract][Full Text] [Related]
17. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens. Schmidt O; Hink L; Horn MA; Drake HL ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931 [TBL] [Abstract][Full Text] [Related]
18. Stimulating Effect of Doloman A; Boeren S; Miller CD; Sousa DZ Appl Environ Microbiol; 2022 Jul; 88(13):e0039122. PubMed ID: 35699440 [TBL] [Abstract][Full Text] [Related]
19. Interspecies Formate Exchange Drives Syntrophic Growth of Day LA; Kelsey EL; Fonseca DR; Costa KC Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033 [TBL] [Abstract][Full Text] [Related]
20. Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. Müller N; Schleheck D; Schink B J Bacteriol; 2009 Oct; 191(19):6167-77. PubMed ID: 19648244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]