These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24387321)

  • 21. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice.
    Balasa B; Deng C; Lee J; Bradley LM; Dalton DK; Christadoss P; Sarvetnick N
    J Exp Med; 1997 Aug; 186(3):385-91. PubMed ID: 9236190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD4+ T and B cells cooperate in the immunoregulation of Experimental Autoimmune Myasthenia Gravis.
    Milani M; Ostlie N; Wu H; Wang W; Conti-Fine BM
    J Neuroimmunol; 2006 Oct; 179(1-2):152-62. PubMed ID: 16945426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. B cell autoimmunity to acetylcholine receptor and its subunits in Lewis rats over the course of experimental autoimmune myasthenia gravis.
    Wang ZY; Link H; Qiao J; Olsson T; Huang WX
    J Neuroimmunol; 1993 Jun; 45(1-2):103-12. PubMed ID: 8331155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.
    Xiao BG; Duan RS; Zhu WH; Lu CZ
    Cell Immunol; 2006 Jun; 241(2):95-101. PubMed ID: 17005165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells.
    Xiao BG; Duan RS; Link H; Huang YM
    Cell Immunol; 2003 May; 223(1):63-9. PubMed ID: 12914759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental autoimmune myasthenia gravis in naive non-obese diabetic (NOD/LtJ) mice: susceptibility associated with natural IgG antibodies to the acetylcholine receptor.
    Quintana FJ; Pitashny M; Cohen IR
    Int Immunol; 2003 Jan; 15(1):11-6. PubMed ID: 12502721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.
    Yi HJ; Chae CS; So JS; Tzartos SJ; Souroujon MC; Fuchs S; Im SH
    Mol Immunol; 2008 Nov; 46(1):192-201. PubMed ID: 18799218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. VH gene family utilization of anti-acetylcholine receptor antibodies in experimental autoimmune myasthenia gravis.
    Graus YM; Verschuuren JJ; Bos NA; van Breda Vriesman PJ; De Baets MH
    J Neuroimmunol; 1993 Mar; 43(1-2):113-24. PubMed ID: 8458983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interferon-gamma-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis.
    Adikari SB; Lian H; Link H; Huang YM; Xiao BG
    Clin Exp Immunol; 2004 Nov; 138(2):230-6. PubMed ID: 15498031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis.
    Thiruppathi M; Sheng JR; Li L; Prabhakar BS; Meriggioli MN
    J Autoimmun; 2014 Aug; 52():64-73. PubMed ID: 24388113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental autoimmune myasthenia gravis in mice expressing human immunoglobulin loci.
    Stassen MH; Meng F; Melgert E; Machiels BM; Im SH; Fuchs S; Gerritsen AF; van Dijk MA; van de Winkel JG; De Baets MH
    J Neuroimmunol; 2003 Feb; 135(1-2):56-61. PubMed ID: 12576224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs.
    Losen M; Martinez-Martinez P; Molenaar PC; Lazaridis K; Tzartos S; Brenner T; Duan RS; Luo J; Lindstrom J; Kusner L
    Exp Neurol; 2015 Aug; 270():18-28. PubMed ID: 25796590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decreased expression of Src homology 2 domain-containing protein tyrosine phosphatase 1 reduces T cell activation threshold but not the severity of experimental autoimmune myasthenia gravis.
    Deng C; Wu B; Yang H; Hussain RZ; Lovett-Racke AE; Christadoss P; Racke MK
    J Neuroimmunol; 2003 May; 138(1-2):76-82. PubMed ID: 12742656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profile of the regions of acetylcholine receptor alpha chain recognized by T-lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor.
    Oshima M; Pachner AR; Atassi MZ
    Mol Immunol; 1994 Aug; 31(11):833-43. PubMed ID: 7519305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. T cell responses in EAMG-susceptible and non-susceptible mouse strains after immunization with overlapping peptides encompassing the extracellular part of Torpedo californica acetylcholine receptor alpha chain. Implication to role in myasthenia gravis of autoimmune T-cell responses against receptor degradation products.
    Oshima M; Yokoi T; Deitiker P; Atassi MZ
    Autoimmunity; 1998; 27(2):79-90. PubMed ID: 9583739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis.
    Dedhia V; Goluszko E; Wu B; Deng C; Christadoss P
    Clin Immunol Immunopathol; 1998 Jun; 87(3):266-75. PubMed ID: 9646836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recall immune memory: a new tool for generating late onset autoimmune myasthenia gravis.
    Stacy S; Infante AJ; Wall KA; Krolick K; Kraig E
    Mech Ageing Dev; 2003; 124(8-9):931-40. PubMed ID: 14499498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.