These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 24387433)
1. High-power liquid-lithium jet target for neutron production. Halfon S; Arenshtam A; Kijel D; Paul M; Berkovits D; Eliyahu I; Feinberg G; Friedman M; Hazenshprung N; Mardor I; Nagler A; Shimel G; Tessler M; Silverman I Rev Sci Instrum; 2013 Dec; 84(12):123507. PubMed ID: 24387433 [TBL] [Abstract][Full Text] [Related]
2. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
3. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Bisyakoev M; Eliyahu I; Feinberg G; Hazenshprung N; Kijel D; Nagler A; Silverman I Appl Radiat Isot; 2011 Dec; 69(12):1654-6. PubMed ID: 21459008 [TBL] [Abstract][Full Text] [Related]
4. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy. Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076 [TBL] [Abstract][Full Text] [Related]
5. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target. Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Aviv O; Berkovits D; Dudovitch O; Eisen Y; Eliyahu I; Feinberg G; Haquin G; Hazenshprung N; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M; Yungrais Z Rev Sci Instrum; 2014 May; 85(5):056105. PubMed ID: 24880430 [TBL] [Abstract][Full Text] [Related]
6. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases. Halfon S; Paul M; Steinberg D; Nagler A; Arenshtam A; Kijel D; Polacheck I; Srebnik M Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S278-81. PubMed ID: 19406650 [TBL] [Abstract][Full Text] [Related]
8. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT. Kobayashi T; Miura K; Hayashizaki N; Aritomi M Appl Radiat Isot; 2014 Jun; 88():198-202. PubMed ID: 24412425 [TBL] [Abstract][Full Text] [Related]
9. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]
10. First neutron generation in the BINP accelerator based neutron source. Bayanov B; Burdakov A; Chudaev V; Ivanov A; Konstantinov S; Kuznetsov A; Makarov A; Malyshkin G; Mekler K; Sorokin I; Sulyaev Y; Taskaev S Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S285-7. PubMed ID: 19375928 [TBL] [Abstract][Full Text] [Related]
13. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT. Kobayashi T; Bengua G; Tanaka K; Nakagawa Y Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111 [TBL] [Abstract][Full Text] [Related]
14. Liquid Li based neutron source for BNCT and science application. Horiike H; Murata I; Iida T; Yoshihashi S; Hoashi E; Kato I; Hashimoto N; Kuri S; Oshiro S Appl Radiat Isot; 2015 Dec; 106():92-4. PubMed ID: 26253274 [TBL] [Abstract][Full Text] [Related]
15. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP. Taniguchi S; Nakao N; Nakamura T; Yashima H; Iwamoto Y; Satoh D; Nakane Y; Nakashima H; Itoga T; Tamii A; Hatanaka K Radiat Prot Dosimetry; 2007; 126(1-4):23-7. PubMed ID: 17502318 [TBL] [Abstract][Full Text] [Related]
16. Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Taskaev S; Berendeev E; Bikchurina M; Bykov T; Kasatov D; Kolesnikov I; Koshkarev A; Makarov A; Ostreinov G; Porosev V; Savinov S; Shchudlo I; Sokolova E; Sorokin I; Sycheva T; Verkhovod G Biology (Basel); 2021 Apr; 10(5):. PubMed ID: 33919153 [TBL] [Abstract][Full Text] [Related]
17. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction. Kim KO; Kim JK; Kim SY Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311 [TBL] [Abstract][Full Text] [Related]
18. Installation and application of an intense 7Li(p,n) neutron source for 20-90 MeV region. Baba M; Okamura H; Hagiwara M; Itoga T; Kamada S; Yahagi Y; Ibe E Radiat Prot Dosimetry; 2007; 126(1-4):13-7. PubMed ID: 17517671 [TBL] [Abstract][Full Text] [Related]
19. Overview of the IBA accelerator-based BNCT system. Forton E; Stichelbaut F; Cambriani A; Kleeven W; Ahlback J; Jongen Y Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S262-5. PubMed ID: 19376728 [TBL] [Abstract][Full Text] [Related]
20. Design of a mixed material moderator in a beam-shaping assembly for proton accelerator-based boron neutron capture therapy. Ge Y; Zhong Y; Yuan N; Sun Y; Zou L; Yang Z; Ma W; Lu L Appl Radiat Isot; 2024 Dec; 214():111515. PubMed ID: 39276639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]