These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 24387459)
1. Design and validation of a high-voltage levitation circuit for electrostatic accelerometers. Li G; Wu SC; Zhou ZB; Bai YZ; Hu M; Luo J Rev Sci Instrum; 2013 Dec; 84(12):125004. PubMed ID: 24387459 [TBL] [Abstract][Full Text] [Related]
2. Noise investigation of an electrostatic accelerometer by a high-voltage levitation method combined with a translation-tilt compensation pendulum bench. Hu S; Pei S; Hu M; Bai Y; Li H; Liu L; Yang B; Wu S; Zhou Z Rev Sci Instrum; 2021 Jun; 92(6):064502. PubMed ID: 34243500 [TBL] [Abstract][Full Text] [Related]
3. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology. Tian W; Wu SC; Zhou ZB; Qu SB; Bai YZ; Luo J Rev Sci Instrum; 2012 Sep; 83(9):095002. PubMed ID: 23020407 [TBL] [Abstract][Full Text] [Related]
4. A High-Performance Digital Interface Circuit for a High-Q Micro-Electromechanical System Accelerometer. Li X; Hu J; Liu X Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30572597 [TBL] [Abstract][Full Text] [Related]
5. A fully integrated neural recording amplifier with DC input stabilization. Mohseni P; Najafi K IEEE Trans Biomed Eng; 2004 May; 51(5):832-7. PubMed ID: 15132510 [TBL] [Abstract][Full Text] [Related]
7. Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer. Yin Y; Sun B; Han F Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213376 [TBL] [Abstract][Full Text] [Related]
8. Digitally gain controlled linear high voltage amplifier for laboratory applications. Koçum C Rev Sci Instrum; 2011 Aug; 82(8):084702. PubMed ID: 21895261 [TBL] [Abstract][Full Text] [Related]
9. Wide-band current preamplifier for conductance measurements with large input capacitance. Kretinin AV; Chung Y Rev Sci Instrum; 2012 Aug; 83(8):084704. PubMed ID: 22938321 [TBL] [Abstract][Full Text] [Related]
10. Design, fabrication and levitation experiments of a micromachined electrostatically suspended six-axis accelerometer. Cui F; Liu W; Chen W; Zhang W; Wu X Sensors (Basel); 2011; 11(12):11206-34. PubMed ID: 22247662 [TBL] [Abstract][Full Text] [Related]
11. A Low-Noise Micromachined Accelerometer with Reconfigurable Electrodes for Resonance Suppression. Ahmed Z; Duruaku C; Edalatfar F; Moallem M; Bahreyni B Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374773 [TBL] [Abstract][Full Text] [Related]
12. Structural Design and Testing of a Micromechanical Resonant Accelerometer. Liu H; Zhang Y; Wu J Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014193 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive Noise Modeling of Piezoelectric Charge Accelerometer with Signal Conditioning Circuit. Ali G; Mohd-Yasin F Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399011 [TBL] [Abstract][Full Text] [Related]
14. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. Zhang F; Holleman J; Otis BP IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179 [TBL] [Abstract][Full Text] [Related]
15. An energy-efficient micropower neural recording amplifier. Wattanapanitch W; Fee M; Sarpeshkar R IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668 [TBL] [Abstract][Full Text] [Related]
16. A Ground-Based Electrostatically Suspended Accelerometer. Liu H; He X; Wu C; Zhang R Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931812 [TBL] [Abstract][Full Text] [Related]
17. Bias Stability Investigation of a Triaxial Navigation-Compatible Accelerometer with an Electrostatic Spring. Chen D; Bai Y; Wang C; Wu S; Xiao C; Yu J; Zhou Z Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365801 [TBL] [Abstract][Full Text] [Related]
18. Implementation of the scale factor balance on two pairs of quartz-flexure capacitive accelerometers by trimming bias voltage. Tu LC; Wang ZW; Liu JQ; Huang XQ; Li Z; Xie YF; Luo J Rev Sci Instrum; 2014 Sep; 85(9):095108. PubMed ID: 25273773 [TBL] [Abstract][Full Text] [Related]
19. Extension of non-invasive EEG into the kHz range for evoked thalamocortical activity by means of very low noise amplifiers. Scheer HJ; Fedele T; Curio G; Burghoff M Physiol Meas; 2011 Dec; 32(12):N73-9. PubMed ID: 22094624 [TBL] [Abstract][Full Text] [Related]
20. Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. Majidzadeh V; Schmid A; Leblebici Y IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):262-71. PubMed ID: 23851477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]