These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24388136)

  • 21. New-Generation Carbon-Capture Ionic Liquids Regulated by Metal-Ion Coordination.
    Suo X; Yang Z; Fu Y; Do-Thanh CL; Maltsev D; Luo H; Mahurin SM; Jiang DE; Xing H; Dai S
    ChemSusChem; 2022 Jan; 15(2):e202102136. PubMed ID: 34862754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids.
    Goodrich BF; de la Fuente JC; Gurkan BE; Lopez ZK; Price EA; Huang Y; Brennecke JF
    J Phys Chem B; 2011 Jul; 115(29):9140-50. PubMed ID: 21650466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbene formation in ionic liquids: spontaneous, induced, or prohibited?
    Hollóczki O; Firaha DS; Friedrich J; Brehm M; Cybik R; Wild M; Stark A; Kirchner B
    J Phys Chem B; 2013 May; 117(19):5898-907. PubMed ID: 23566121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation.
    Gutowski KE; Maginn EJ
    J Am Chem Soc; 2008 Nov; 130(44):14690-704. PubMed ID: 18847198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.
    Pan M; Cao N; Lin W; Luo X; Chen K; Che S; Li H; Wang C
    ChemSusChem; 2016 Sep; 9(17):2351-7. PubMed ID: 27458723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid phase behavior of ionic liquids with alcohols: experimental studies and modeling.
    Crosthwaite JM; Muldoon MJ; Aki SN; Maginn EJ; Brennecke JF
    J Phys Chem B; 2006 May; 110(18):9354-61. PubMed ID: 16671755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning-Boosted Design of Ionic Liquids for CO
    Kuroki N; Suzuki Y; Kodama D; Chowdhury FA; Yamada H; Mori H
    J Phys Chem B; 2023 Mar; 127(9):2022-2027. PubMed ID: 36827525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First-principles-guided design of ionic liquids for CO2 capture.
    Wu C; Senftle TP; Schneider WF
    Phys Chem Chem Phys; 2012 Oct; 14(38):13163-70. PubMed ID: 22948394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [EMmim][NTf
    He X; Gao Y; Shi Y; Zhang X; Liang Z; Zhang R; Song X; Lai Q; Adidharma H; Russell AG; Eddings EG; Fei W; Cheng F; Tsang SCE; Wang J; Fan M
    Adv Sci (Weinh); 2023 Jan; 10(3):e2205352. PubMed ID: 36416301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amine-based CO2 capture technology development from the beginning of 2013-a review.
    Dutcher B; Fan M; Russell AG
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2137-48. PubMed ID: 25607244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic Liquids Catalysis for Carbon Dioxide Conversion With Nucleophiles.
    Xia SM; Chen KH; Fu HC; He LN
    Front Chem; 2018; 6():462. PubMed ID: 30349815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations.
    Prasad BR; Senapati S
    J Phys Chem B; 2009 Apr; 113(14):4739-43. PubMed ID: 19281169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing Supported Ionic Liquids (ILs) within Inorganic Nanosheets for CO₂ Capture Applications.
    Zhou Y; Liu J; Xiao M; Meng Y; Sun L
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5547-55. PubMed ID: 26840623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).
    Hojniak SD; Silverwood IP; Khan AL; Vankelecom IF; Dehaen W; Kazarian SG; Binnemans K
    J Phys Chem B; 2014 Jul; 118(26):7440-9. PubMed ID: 24895912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel methodology for assessing the environmental sustainability of ionic liquids used for CO
    Cuéllar-Franca RM; García-Gutiérrez P; Taylor SF; Hardacre C; Azapagic A
    Faraday Discuss; 2016 Oct; 192():283-301. PubMed ID: 27498650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO2 Absorption Using Fluorine Functionalized Ionic Liquids: Interplay of Hydrogen and σ-Hole Interactions.
    Rao SS; Gejji SP
    J Phys Chem A; 2016 Mar; 120(8):1243-60. PubMed ID: 26862775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in ionic liquids-based hybrid processes for CO
    Lian S; Song C; Liu Q; Duan E; Ren H; Kitamura Y
    J Environ Sci (China); 2021 Jan; 99():281-295. PubMed ID: 33183708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-molar CO
    Li C; Lu D; Wu C
    Phys Chem Chem Phys; 2020 May; 22(20):11354-11361. PubMed ID: 32373885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction Mechanism and Free Energy Barriers for the Chemisorption of CO
    Gorantla KR; Mallik BS
    J Phys Chem A; 2020 Feb; 124(5):836-848. PubMed ID: 31948236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.