These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24388517)

  • 1. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots.
    Abiko T; Obara M
    Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting development of lysigenous aerenchyma in two rice genotypes under phosphorus deficiency.
    Pujol V; Wissuwa M
    BMC Res Notes; 2018 Jan; 11(1):60. PubMed ID: 29357942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.).
    Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC
    Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of osmotically dependent promotion of aerenchyma formation at different levels in the primary roots of rice using a 'sandwich' method and X-ray computed tomography.
    Karahara I; Umemura K; Soga Y; Akai Y; Bando T; Ito Y; Tamaoki D; Uesugi K; Abe J; Yamauchi D; Mineyuki Y
    Ann Bot; 2012 Jul; 110(2):503-9. PubMed ID: 22499856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NH
    Zhang X; Liu H; Zhang S; Wang J; Wei C
    Sci Rep; 2019 Sep; 9(1):12712. PubMed ID: 31481724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.
    Fu Y; Yang X; Shen H
    Ecotoxicol Environ Saf; 2018 Oct; 161():534-541. PubMed ID: 29929129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate.
    Yang X; Li Y; Ren B; Ding L; Gao C; Shen Q; Guo S
    Plant Cell Physiol; 2012 Mar; 53(3):495-504. PubMed ID: 22257489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher nitrogen use efficiency (NUE) in hybrid "super rice" links to improved morphological and physiological traits in seedling roots.
    Chen M; Chen G; Di D; Kronzucker HJ; Shi W
    J Plant Physiol; 2020 Aug; 251():153191. PubMed ID: 32585498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings.
    Chou TS; Chao YY; Huang WD; Hong CY; Kao CH
    J Plant Physiol; 2011 Jul; 168(10):1021-30. PubMed ID: 21216027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.
    Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C
    Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress.
    Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G
    Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging.
    Yamauchi T; Abe F; Tsutsumi N; Nakazono M
    Front Plant Sci; 2019; 10():259. PubMed ID: 31024577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.
    Wang W; Zhao XQ; Hu ZM; Shao JF; Che J; Chen RF; Dong XY; Shen RF
    Ann Bot; 2015 Aug; 116(2):237-46. PubMed ID: 26105187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low nitrate under waterlogging triggers exodermal suberization to form a barrier to radial oxygen loss in rice roots.
    Shiono K; Ejiri M; Sawazaki Y; Egishi Y; Tsunoda T
    Plant Physiol; 2024 Sep; 196(1):551-563. PubMed ID: 38761404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations.
    Colmer TD; Cox MC; Voesenek LA
    New Phytol; 2006; 170(4):767-77. PubMed ID: 16684237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. γ-Aminobutyric Acid Suppresses Iron Transportation from Roots to Shoots in Rice Seedlings by Inducing Aerenchyma Formation.
    Zhu C; Qi Q; Niu H; Wu J; Yang N; Gan L
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33379335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.