These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24388692)

  • 1. Nutrients removal and recovery in bioelectrochemical systems: a review.
    Kelly PT; He Z
    Bioresour Technol; 2014 Feb; 153():351-60. PubMed ID: 24388692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system.
    Zhang F; Li J; He Z
    Bioresour Technol; 2014 Aug; 166():630-4. PubMed ID: 24948532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.
    Nancharaiah YV; Venkata Mohan S; Lens PNL
    Bioresour Technol; 2016 Sep; 215():173-185. PubMed ID: 27053446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system.
    Tong Y; He Z
    J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient minimisation in the pulp and paper industry: an overview.
    Slade AH; Ellis RJ; vanden Heuvel M; Stuthridge TR
    Water Sci Technol; 2004; 50(3):111-22. PubMed ID: 15461405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review.
    Lee YJ; Lin BL; Xue M; Tsunemi K
    Bioresour Technol; 2022 Nov; 363():127927. PubMed ID: 36096326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives.
    Zou S; He Z
    Water Res; 2018 Mar; 131():62-73. PubMed ID: 29274548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells.
    Hussain A; Manuel M; Tartakovsky B
    J Environ Manage; 2016 May; 173():23-33. PubMed ID: 26950500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective.
    Wang S; Adekunle A; Raghavan V
    J Environ Manage; 2022 Sep; 317():115333. PubMed ID: 35617867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios.
    Ge S; Peng Y; Wang S; Guo J; Ma B; Zhang L; Cao X
    Bioresour Technol; 2010 Dec; 101(23):9012-9. PubMed ID: 20650632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure.
    Chen Y; Su Y; Zheng X; Chen H; Yang H
    Water Res; 2012 Sep; 46(14):4379-86. PubMed ID: 22704928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.
    Vanderzalm JL; Page DW; Barry KE; Dillon PJ
    Water Res; 2013 May; 47(7):2177-89. PubMed ID: 23462726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms.
    Wong PY; Cheng KY; Kaksonen AH; Sutton DC; Ginige MP
    Water Res; 2013 Nov; 47(17):6488-95. PubMed ID: 24041527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining current trends and future outlook of bio-electrochemical systems (BES) for nutrient conversion and recovery: an overview.
    Bhattacharya A; Garg S; Chatterjee P
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):86699-86740. PubMed ID: 37438499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards practical implementation of bioelectrochemical wastewater treatment.
    Rozendal RA; Hamelers HV; Rabaey K; Keller J; Buisman CJ
    Trends Biotechnol; 2008 Aug; 26(8):450-9. PubMed ID: 18585807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory studies on nitrogen and phosphorus removal from swine wastewater by iron electrolysis.
    Ikematsu M; Kaneda K; Takaoka D; Yasuda M
    Environ Technol; 2007 May; 28(5):521-8. PubMed ID: 17615961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Biotechnol Bioeng; 2008 Jun; 100(3):529-41. PubMed ID: 18098318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives.
    Iskander SM; Brazil B; Novak JT; He Z
    Bioresour Technol; 2016 Feb; 201():347-54. PubMed ID: 26681364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.
    Yan H; Saito T; Regan JM
    Water Res; 2012 May; 46(7):2215-24. PubMed ID: 22386083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.