BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24389244)

  • 1. Reproduction of consistent pulse-waveform changes using a computational model of the cerebral circulatory system.
    Connolly M; He X; Gonzalez N; Vespa P; DiStefano J; Hu X
    Med Eng Phys; 2014 Mar; 36(3):354-63. PubMed ID: 24389244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproduction of ICP Waveform Changes in a Mathematical Model of the Cerebrospinal Circulatory System.
    Connolly M; He X; Gonzalez N; Hu X
    Acta Neurochir Suppl; 2016; 122():313-6. PubMed ID: 27165928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow.
    Ursino M
    Comput Biomed Res; 1990 Dec; 23(6):542-59. PubMed ID: 2276264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation.
    Portnoy HD; Chopp M; Branch C; Shannon MB
    J Neurosurg; 1982 May; 56(5):666-78. PubMed ID: 7069479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
    Czosnyka Z; Kim DJ; Balédent O; Schmidt EA; Smielewski P; Czosnyka M
    Acta Neurochir Suppl; 2018; 126():233-236. PubMed ID: 29492567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Coupled Lumped-Parameter and Distributed Network Model for Cerebral Pulse-Wave Hemodynamics.
    Ryu J; Hu X; Shadden SC
    J Biomech Eng; 2015 Oct; 137(10):101009. PubMed ID: 26287937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume.
    Hamilton R; Baldwin K; Fuller J; Vespa P; Hu X; Bergsneider M
    J Appl Physiol (1985); 2012 Nov; 113(10):1560-6. PubMed ID: 22995390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic modeling of the circle of Willis reveals unanticipated functions during cardiovascular stress.
    Muskat JC; Rayz VL; Goergen CJ; Babbs CF
    J Appl Physiol (1985); 2021 Sep; 131(3):1020-1034. PubMed ID: 34264126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1D simulation of blood flow characteristics in the circle of Willis using THINkS.
    Huang GP; Yu H; Yang Z; Schwieterman R; Ludwig B
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):389-397. PubMed ID: 29722571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical study of human intracranial hydrodynamics. Part 1--The cerebrospinal fluid pulse pressure.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):379-401. PubMed ID: 3177984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation.
    Asgari S; Bergsneider M; Hamilton R; Vespa P; Hu X
    Neurocrit Care; 2011 Aug; 15(1):55-62. PubMed ID: 21052864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of cerebrovascular reactivity including the circle of willis and cortical anastomoses.
    Ursino M; Giannessi M
    Ann Biomed Eng; 2010 Mar; 38(3):955-74. PubMed ID: 20094916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs.
    van Eijndhoven JH; Avezaat CJ
    Neurosurgery; 1986 Oct; 19(4):507-22. PubMed ID: 3097566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-subject correlation exists between morphological metrics of cerebral blood flow velocity and intracranial pressure pulses.
    Kim S; Hu X; McArthur D; Hamilton R; Bergsneider M; Glenn T; Martin N; Vespa P
    Neurocrit Care; 2011 Apr; 14(2):229-37. PubMed ID: 21136207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical study of human intracranial hydrodynamics. Part 2--Simulation of clinical tests.
    Ursino M
    Ann Biomed Eng; 1988; 16(4):403-16. PubMed ID: 3177985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Intracranial pressure pulse waveform: considerations about its origin and methods of estimating intracranial pressure dynamics].
    Hirai O; Handa H; Ishikawa M
    No To Shinkei; 1982 Nov; 34(11):1059-65. PubMed ID: 7159538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.