These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24389351)

  • 1. Capture and storage of hydrogen gas by zero-valent iron.
    Reardon EJ
    J Contam Hydrol; 2014 Feb; 157():117-24. PubMed ID: 24389351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degassing, gas retention and release in Fe(0) permeable reactive barriers.
    Ruhl AS; Jekel M
    J Contam Hydrol; 2014 Apr; 159():11-9. PubMed ID: 24549176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis.
    Wang W; Wu Y
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):783-796. PubMed ID: 27783109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.
    Velimirovic M; Carniato L; Simons Q; Schoups G; Seuntjens P; Bastiaens L
    J Hazard Mater; 2014 Apr; 270():18-26. PubMed ID: 24525160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On nanoscale metallic iron for groundwater remediation.
    Noubactep C; Caré S
    J Hazard Mater; 2010 Oct; 182(1-3):923-7. PubMed ID: 20594643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Application of Nano-Sized Zero-Valent Iron for In Situ Remediation of Chlorinated Ethylenes in Groundwater: A Field Case Study.
    Lacina P; Dvorak V; Vodickova E; Barson P; Kalivoda J; Goold S
    Water Environ Res; 2015 Apr; 87(4):326-33. PubMed ID: 26462077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Should the term 'metallic iron' appear in the title of a research paper?
    Noubactep C
    Chemosphere; 2022 Jan; 287(Pt 4):132314. PubMed ID: 34600924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced reduction of nitrate by supported nanoscale zero-valent iron prepared in ethanol-water solution.
    Park H; Park YM; Oh SK; You KM; Lee SH
    Environ Technol; 2009 Mar; 30(3):261-7. PubMed ID: 19438058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of gas production and entrapment in granular iron medium.
    Kamolpornwijit W; Liang L
    J Contam Hydrol; 2006 Jan; 82(3-4):338-56. PubMed ID: 16337024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles.
    Su C; Puls RW; Krug TA; Watling MT; O'Hara SK; Quinn JW; Ruiz NE
    Water Res; 2012 Oct; 46(16):5071-84. PubMed ID: 22868086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater.
    Fjordbøge AS; Baun A; Vastrup T; Kjeldsen P
    Chemosphere; 2013 Jan; 90(2):627-33. PubMed ID: 23021613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.
    Dror I; Jacov OM; Cortis A; Berkowitz B
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3416-23. PubMed ID: 22680618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted delivery of hydrogen for the bioremediation of aquifers contaminated by dissolved chlorinated compounds.
    Maire J; Davarzani H; Colombano S; Fatin-Rouge N
    Environ Pollut; 2019 Jun; 249():443-452. PubMed ID: 30913443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic Corrosion of Zero-Valent Iron at Elevated Temperatures.
    Metzgen AD; Dahmke A; Ebert M
    Environ Sci Technol; 2021 Jun; 55(12):8010-8019. PubMed ID: 34060824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic iron for environmental remediation: learning from the Becher process.
    Noubactep C
    J Hazard Mater; 2009 Sep; 168(2-3):1609-12. PubMed ID: 19327887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.