BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24389360)

  • 1. Identification of novel alternative splicing events in the huntingtin gene and assessment of the functional consequences using structural protein homology modelling.
    Hughes AC; Mort M; Elliston L; Thomas RM; Brooks SP; Dunnett SB; Jones L
    J Mol Biol; 2014 Apr; 426(7):1428-38. PubMed ID: 24389360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Huntingtin Exists as Multiple Splice Forms in Human Brain.
    Mort M; Carlisle FA; Waite AJ; Elliston L; Allen ND; Jones L; Hughes AC
    J Huntingtons Dis; 2015; 4(2):161-71. PubMed ID: 26397897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive Expression Analysis of Htt Transcripts in Brain Regions from the zQ175 HD Mouse Model Using a QuantiGene Multiplex Assay.
    Papadopoulou AS; Gomez-Paredes C; Mason MA; Taxy BA; Howland D; Bates GP
    Sci Rep; 2019 Nov; 9(1):16137. PubMed ID: 31695145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrantly spliced HTT, a new player in Huntington's disease pathogenesis.
    Gipson TA; Neueder A; Wexler NS; Bates GP; Housman D
    RNA Biol; 2013 Nov; 10(11):1647-52. PubMed ID: 24256709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity.
    Sun X; Marque LO; Cordner Z; Pruitt JL; Bhat M; Li PP; Kannan G; Ladenheim EE; Moran TH; Margolis RL; Rudnicki DD
    Hum Mol Genet; 2014 Dec; 23(23):6302-17. PubMed ID: 25035419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes.
    Woodman B; Butler R; Landles C; Lupton MK; Tse J; Hockly E; Moffitt H; Sathasivam K; Bates GP
    Brain Res Bull; 2007 Apr; 72(2-3):83-97. PubMed ID: 17352931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative processing of human HTT mRNA with implications for Huntington's disease therapeutics.
    Fienko S; Landles C; Sathasivam K; McAteer SJ; Milton RE; Osborne GF; Smith EJ; Jones ST; Bondulich MK; Danby ECE; Phillips J; Taxy BA; Kordasiewicz HB; Bates GP
    Brain; 2022 Dec; 145(12):4409-4424. PubMed ID: 35793238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal Huntingtin's polyglutamine stretch on CAG140 mouse model pathogenesis.
    Zheng S; Ghitani N; Blackburn JS; Liu JP; Zeitlin SO
    Mol Brain; 2012 Aug; 5():28. PubMed ID: 22892315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease.
    Sathasivam K; Neueder A; Gipson TA; Landles C; Benjamin AC; Bondulich MK; Smith DL; Faull RL; Roos RA; Howland D; Detloff PJ; Housman DE; Bates GP
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2366-70. PubMed ID: 23341618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Steady-State Mutant Huntingtin mRNA in Huntington's Disease Brain.
    Liu W; Chaurette J; Pfister EL; Kennington LA; Chase KO; Bullock J; Vonsattel JP; Faull RL; Macdonald D; DiFiglia M; Zamore PD; Aronin N
    J Huntingtons Dis; 2013; 2(4):491-500. PubMed ID: 25062733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of huntingtin exon 1 by trans-splicing.
    Rindt H; Yen PF; Thebeau CN; Peterson TS; Weisman GA; Lorson CL
    Cell Mol Life Sci; 2012 Dec; 69(24):4191-204. PubMed ID: 22814437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's disease patients.
    Neueder A; Landles C; Ghosh R; Howland D; Myers RH; Faull RLM; Tabrizi SJ; Bates GP
    Sci Rep; 2017 May; 7(1):1307. PubMed ID: 28465506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression.
    Chung DW; Rudnicki DD; Yu L; Margolis RL
    Hum Mol Genet; 2011 Sep; 20(17):3467-77. PubMed ID: 21672921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification.
    Evers MM; Tran HD; Zalachoras I; Meijer OC; den Dunnen JT; van Ommen GJ; Aartsma-Rus A; van Roon-Mom WM
    Nucleic Acid Ther; 2014 Feb; 24(1):4-12. PubMed ID: 24380395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington's disease patient neurons.
    Krach F; Stemick J; Boerstler T; Weiss A; Lingos I; Reischl S; Meixner H; Ploetz S; Farrell M; Hehr U; Kohl Z; Winner B; Winkler J
    Nat Commun; 2022 Nov; 13(1):6797. PubMed ID: 36357392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Regulation of Tau Exon 2 and 10 Isoforms in Huntington's Disease Brain.
    Petry S; Nateghi B; Keraudren R; Sergeant N; Planel E; Hébert SS; St-Amour I
    Neuroscience; 2023 May; 518():54-63. PubMed ID: 35868517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).
    Ratovitski T; Arbez N; Stewart JC; Chighladze E; Ross CA
    Cell Cycle; 2015; 14(11):1716-29. PubMed ID: 25927346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.
    Conforti P; Camnasio S; Mutti C; Valenza M; Thompson M; Fossale E; Zeitlin S; MacDonald ME; Zuccato C; Cattaneo E
    Neurobiol Dis; 2013 Feb; 50():160-70. PubMed ID: 23089356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Optimization of RNA-Splicing Modulators as Huntingtin Protein-Lowering Agents for the Treatment of Huntington's Disease.
    Liu L; Malagu K; Haughan AF; Khetarpal V; Stott AJ; Esmieu W; Vater HD; Webster SJ; Van de Poël AJ; Clissold C; Cosgrove B; Sutton B; Spencer JA; Breccia P; Gancia E; Bonomo S; Ladduwahetty T; Lazari O; Patel H; Atton HC; Clifton S; Mota DM; Magnani D; O'Neill A; Stebbeds M; Macabuag N; Todd D; Herva ME; Mitchell P; Visser M; Compte Sancerni S; Grand Moursel L; da Silva M; Kritikou E; Heikkinen TT; Bolkvadze T; Fodale V; Spadafora D; Daldin M; Bresciani A; Mangette JE; Doherty EM; Lee MR; Herbst T; Monteagudo E; Macdonald D; Plotnikov NV; Chambers M; McAllister G; Muňoz-Sanjuan I; Dominguez C
    J Med Chem; 2023 Sep; 66(18):13205-13246. PubMed ID: 37712656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin.
    Carroll JB; Warby SC; Southwell AL; Doty CN; Greenlee S; Skotte N; Hung G; Bennett CF; Freier SM; Hayden MR
    Mol Ther; 2011 Dec; 19(12):2178-85. PubMed ID: 21971427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.