These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24389360)

  • 21. Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington's disease.
    Moffitt H; McPhail GD; Woodman B; Hobbs C; Bates GP
    PLoS One; 2009 Nov; 4(11):e8025. PubMed ID: 19956633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts.
    Zhang H; Das S; Li QZ; Dragatsis I; Repa J; Zeitlin S; Hajnóczky G; Bezprozvanny I
    BMC Neurosci; 2008 Apr; 9():38. PubMed ID: 18412970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of huntingtin proteolytic fragments in human lymphoblast cell lines and human brain.
    Toneff T; Mende-Mueller L; Wu Y; Hwang SR; Bundey R; Thompson LM; Chesselet MF; Hook V
    J Neurochem; 2002 Jul; 82(1):84-92. PubMed ID: 12091468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberrant splicing in Huntington's disease via disrupted TDP-43 activity accompanied by altered m6A RNA modification.
    Nguyen TB; Miramontes R; Chillon-Marinas C; Maimon R; Vazquez-Sanchez S; Lau AL; McClure NR; England WE; Singha M; Stocksdale JT; Jang KH; Jung S; McKnight JI; Ho LN; Faull RLM; Steffan JS; Reidling JC; Jang C; Lee G; Cleveland DW; Lagier-Tourenne C; Spitale RC; Thompson LM
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significantly differential diffusion of neuropathological aggregates in the brain of transgenic mice carrying N-terminal mutant huntingtin fused with green fluorescent protein.
    Cheng PH; Li CL; Her LS; Chang YF; Chan AW; Chen CM; Yang SH
    Brain Struct Funct; 2013 Jan; 218(1):283-94. PubMed ID: 22422149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington disease models.
    Sogorb-Gonzalez M; Landles C; Caron NS; Stam A; Osborne G; Hayden MR; Howland D; van Deventer S; Bates GP; Vallès A; Evers M
    Brain; 2024 Aug; ():. PubMed ID: 39155061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis.
    Culver BP; Savas JN; Park SK; Choi JH; Zheng S; Zeitlin SO; Yates JR; Tanese N
    J Biol Chem; 2012 Jun; 287(26):21599-614. PubMed ID: 22556411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice.
    Brooks S; Higgs G; Jones L; Dunnett SB
    Brain Res Bull; 2012 Jun; 88(2-3):182-8. PubMed ID: 20457230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease.
    Tano V; Utami KH; Yusof NABM; Bégin J; Tan WWL; Pouladi MA; Langley SR
    EBioMedicine; 2023 Aug; 94():104720. PubMed ID: 37481821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulatory mechanisms of incomplete huntingtin mRNA splicing.
    Neueder A; Dumas AA; Benjamin AC; Bates GP
    Nat Commun; 2018 Sep; 9(1):3955. PubMed ID: 30262848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
    Kuhn A; Goldstein DR; Hodges A; Strand AD; Sengstag T; Kooperberg C; Becanovic K; Pouladi MA; Sathasivam K; Cha JH; Hannan AJ; Hayden MR; Leavitt BR; Dunnett SB; Ferrante RJ; Albin R; Shelbourne P; Delorenzi M; Augood SJ; Faull RL; Olson JM; Bates GP; Jones L; Luthi-Carter R
    Hum Mol Genet; 2007 Aug; 16(15):1845-61. PubMed ID: 17519223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased caspase-2, calpain activations and decreased mitochondrial complex II activity in cells expressing exogenous huntingtin exon 1 containing CAG repeat in the pathogenic range.
    Majumder P; Raychaudhuri S; Chattopadhyay B; Bhattacharyya NP
    Cell Mol Neurobiol; 2007 Dec; 27(8):1127-45. PubMed ID: 17902043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.
    Bañez-Coronel M; Porta S; Kagerbauer B; Mateu-Huertas E; Pantano L; Ferrer I; Guzmán M; Estivill X; Martí E
    PLoS Genet; 2012; 8(2):e1002481. PubMed ID: 22383888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inducing huntingtin inclusion formation in primary neuronal cell culture and in vivo by high-capacity adenoviral vectors expressing truncated and full-length huntingtin with polyglutamine expansion.
    Huang B; Schiefer J; Sass C; Kosinski CM; Kochanek S
    J Gene Med; 2008 Mar; 10(3):269-79. PubMed ID: 18067195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity.
    Khaled HG; Feng H; Hu X; Sun X; Zheng W; Li PP; Rudnicki DD; Ye W; Chen YC; Southall N; Marugan J; Ross CA; Ferrer M; Henderson MJ; Margolis RL
    Sci Rep; 2021 Mar; 11(1):6157. PubMed ID: 33731741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington's disease.
    Barbaro BA; Lukacsovich T; Agrawal N; Burke J; Bornemann DJ; Purcell JM; Worthge SA; Caricasole A; Weiss A; Song W; Morozova OA; Colby DW; Marsh JL
    Hum Mol Genet; 2015 Feb; 24(4):913-25. PubMed ID: 25305076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome sequencing reveals aberrant alternative splicing in Huntington's disease.
    Lin L; Park JW; Ramachandran S; Zhang Y; Tseng YT; Shen S; Waldvogel HJ; Curtis MA; Faull RL; Troncoso JC; Pletnikova O; Ross CA; Davidson BL; Xing Y
    Hum Mol Genet; 2016 Aug; 25(16):3454-3466. PubMed ID: 27378699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of the Huntington's disease CAG mutation in striatum and cerebellum are quantitative not qualitative.
    Fossale E; Seong IS; Coser KR; Shioda T; Kohane IS; Wheeler VC; Gusella JF; MacDonald ME; Lee JM
    Hum Mol Genet; 2011 Nov; 20(21):4258-67. PubMed ID: 21840924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease.
    Schilling J; Broemer M; Atanassov I; Duernberger Y; Vorberg I; Dieterich C; Dagane A; Dittmar G; Wanker E; van Roon-Mom W; Winter J; Krauß S
    J Mol Biol; 2019 Apr; 431(9):1869-1877. PubMed ID: 30711541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.