These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 24389385)

  • 1. Exploring the network dynamics underlying brain activity during rest.
    Cabral J; Kringelbach ML; Deco G
    Prog Neurobiol; 2014 Mar; 114():102-31. PubMed ID: 24389385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations.
    Cabral J; Luckhoo H; Woolrich M; Joensson M; Mohseni H; Baker A; Kringelbach ML; Deco G
    Neuroimage; 2014 Apr; 90():423-35. PubMed ID: 24321555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the brain network: a review on resting-state fMRI functional connectivity.
    van den Heuvel MP; Hulshoff Pol HE
    Eur Neuropsychopharmacol; 2010 Aug; 20(8):519-34. PubMed ID: 20471808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest.
    Nakagawa TT; Woolrich M; Luckhoo H; Joensson M; Mohseni H; Kringelbach ML; Jirsa V; Deco G
    Neuroimage; 2014 Feb; 87():383-94. PubMed ID: 24246492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of local network oscillations in resting-state functional connectivity.
    Cabral J; Hugues E; Sporns O; Deco G
    Neuroimage; 2011 Jul; 57(1):130-139. PubMed ID: 21511044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the outcome of structural disconnection on resting-state functional connectivity.
    Cabral J; Hugues E; Kringelbach ML; Deco G
    Neuroimage; 2012 Sep; 62(3):1342-53. PubMed ID: 22705375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BOLD correlates of EEG topography reveal rapid resting-state network dynamics.
    Britz J; Van De Ville D; Michel CM
    Neuroimage; 2010 Oct; 52(4):1162-70. PubMed ID: 20188188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging.
    Nakagawa TT; Jirsa VK; Spiegler A; McIntosh AR; Deco G
    Neuroimage; 2013 Oct; 80():318-29. PubMed ID: 23629050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using resting state functional connectivity to unravel networks of tinnitus.
    Husain FT; Schmidt SA
    Hear Res; 2014 Jan; 307():153-62. PubMed ID: 23895873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the virtual brain: network modeling of the intact and the damaged brain.
    Jirsa VK; Sporns O; Breakspear M; Deco G; McIntosh AR
    Arch Ital Biol; 2010 Sep; 148(3):189-205. PubMed ID: 21175008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing.
    Senden M; Goebel R; Deco G
    Neuroimage; 2012 May; 60(4):2274-84. PubMed ID: 22394674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional connectivity dynamics: modeling the switching behavior of the resting state.
    Hansen EC; Battaglia D; Spiegler A; Deco G; Jirsa VK
    Neuroimage; 2015 Jan; 105():525-35. PubMed ID: 25462790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.