These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24389404)
1. Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model. Uto S; Nishizawa S; Takasawa Y; Asawa Y; Fujihara Y; Takato T; Hoshi K Biomed Res; 2013; 34(6):281-8. PubMed ID: 24389404 [TBL] [Abstract][Full Text] [Related]
2. Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Kunisato A; Wakatsuki M; Kodama Y; Shinba H; Ishida I; Nagao K Stem Cells Dev; 2010 Feb; 19(2):229-38. PubMed ID: 19558219 [TBL] [Abstract][Full Text] [Related]
3. [Cartilage/chondrocyte research and osteoarthritis. Regeneration of articular cartilage damage using iPS cell-derived cartilage.]. Tsumaki N Clin Calcium; 2018; 28(6):803-808. PubMed ID: 29848826 [TBL] [Abstract][Full Text] [Related]
4. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Castro-Viñuelas R; Sanjurjo-Rodríguez C; Piñeiro-Ramil M; Hermida-Gómez T; Fuentes-Boquete IM; de Toro-Santos FJ; Blanco-García FJ; Díaz-Prado SM Eur Cell Mater; 2018 Sep; 36():96-109. PubMed ID: 30204229 [TBL] [Abstract][Full Text] [Related]
5. Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat. Katagiri H; Mendes LF; Luyten FP Osteoarthritis Cartilage; 2017 Sep; 25(9):1531-1540. PubMed ID: 28506841 [TBL] [Abstract][Full Text] [Related]
6. iPS cell technologies and cartilage regeneration. Tsumaki N; Okada M; Yamashita A Bone; 2015 Jan; 70():48-54. PubMed ID: 25026496 [TBL] [Abstract][Full Text] [Related]
7. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Wakitani S; Mitsuoka T; Nakamura N; Toritsuka Y; Nakamura Y; Horibe S Cell Transplant; 2004; 13(5):595-600. PubMed ID: 15565871 [TBL] [Abstract][Full Text] [Related]
8. Different Sources of Stem Cells and their Application in Cartilage Tissue Engineering. Ma Q; Liao J; Cai X Curr Stem Cell Res Ther; 2018; 13(7):568-575. PubMed ID: 29359678 [TBL] [Abstract][Full Text] [Related]
10. Transplantation of osteogenically differentiated mouse iPS cells for bone repair. Hayashi T; Misawa H; Nakahara H; Noguchi H; Yoshida A; Kobayashi N; Tanaka M; Ozaki T Cell Transplant; 2012; 21(2-3):591-600. PubMed ID: 22793068 [TBL] [Abstract][Full Text] [Related]
11. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Nam Y; Rim YA; Jung SM; Ju JH Stem Cell Res Ther; 2017 Jan; 8(1):16. PubMed ID: 28129782 [TBL] [Abstract][Full Text] [Related]
12. [Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model]. Berner A; Siebenlist S; Reichert JC; Hendrich C; Nöth U Z Orthop Unfall; 2010 Jan; 148(1):31-8. PubMed ID: 20151353 [TBL] [Abstract][Full Text] [Related]
13. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Zhou G; Liu W; Cui L; Wang X; Liu T; Cao Y Tissue Eng; 2006 Nov; 12(11):3209-21. PubMed ID: 17518635 [TBL] [Abstract][Full Text] [Related]
14. Resveratrol promotes osteogenic differentiation and protects against dexamethasone damage in murine induced pluripotent stem cells. Kao CL; Tai LK; Chiou SH; Chen YJ; Lee KH; Chou SJ; Chang YL; Chang CM; Chen SJ; Ku HH; Li HY Stem Cells Dev; 2010 Feb; 19(2):247-58. PubMed ID: 19656070 [TBL] [Abstract][Full Text] [Related]
15. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. Mierisch CM; Wilson HA; Turner MA; Milbrandt TA; Berthoux L; Hammarskjöld ML; Rekosh D; Balian G; Diduch DR J Bone Joint Surg Am; 2003 Sep; 85(9):1757-67. PubMed ID: 12954835 [TBL] [Abstract][Full Text] [Related]
16. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Wakitani S; Goto T; Young RG; Mansour JM; Goldberg VM; Caplan AI Tissue Eng; 1998; 4(4):429-44. PubMed ID: 9916174 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of Human Induced Pluripotent Stem Cells to Chondrocytes. Guzzo RM; Drissi H Methods Mol Biol; 2015; 1340():79-95. PubMed ID: 26445832 [TBL] [Abstract][Full Text] [Related]
18. Generation of Monkey Induced Pluripotent Stem Cell-Derived Cartilage Lacking Major Histocompatibility Complex Class I Molecules on the Cell Surface. Okutani Y; Abe K; Yamashita A; Morioka M; Matsuda S; Tsumaki N Tissue Eng Part A; 2022 Jan; 28(1-2):94-106. PubMed ID: 34182799 [TBL] [Abstract][Full Text] [Related]
19. Cartilage Tissue Regeneration: The Roles of Cells, Stimulating Factors and Scaffolds. Huang K; Li Q; Li Y; Yao Z; Luo D; Rao P; Xiao J Curr Stem Cell Res Ther; 2018; 13(7):547-567. PubMed ID: 28595567 [TBL] [Abstract][Full Text] [Related]
20. Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Zhu H; Kimura T; Swami S; Wu JY Biomaterials; 2019 Mar; 196():31-45. PubMed ID: 29456164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]