BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 24389458)

  • 1. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes.
    Hunt MC; Tillander V; Alexson SE
    Biochimie; 2014 Mar; 98():45-55. PubMed ID: 24389458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism.
    Hunt MC; Alexson SE
    Prog Lipid Res; 2008 Nov; 47(6):405-21. PubMed ID: 18538142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism.
    Hunt MC; Siponen MI; Alexson SE
    Biochim Biophys Acta; 2012 Sep; 1822(9):1397-410. PubMed ID: 22465940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
    Hunt MC; Solaas K; Kase BF; Alexson SE
    J Biol Chem; 2002 Jan; 277(2):1128-38. PubMed ID: 11673457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nudix hydrolase 7 is an Acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis.
    Reilly SJ; Tillander V; Ofman R; Alexson SE; Hunt MC
    J Biochem; 2008 Nov; 144(5):655-63. PubMed ID: 18799520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.
    Reddy JK; Hashimoto T
    Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism.
    Adebesin F; Widhalm JR; Lynch JH; McCoy RM; Dudareva N
    Plant J; 2018 Mar; 93(5):905-916. PubMed ID: 29315918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids.
    De Marcos Lousa C; van Roermund CW; Postis VL; Dietrich D; Kerr ID; Wanders RJ; Baldwin SA; Baker A; Theodoulou FL
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1279-84. PubMed ID: 23288899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters.
    van Roermund CW; Visser WF; Ijlst L; van Cruchten A; Boek M; Kulik W; Waterham HR; Wanders RJ
    FASEB J; 2008 Dec; 22(12):4201-8. PubMed ID: 18757502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals.
    Mannaerts GP; Van Veldhoven PP; Casteels M
    Cell Biochem Biophys; 2000; 32 Spring():73-87. PubMed ID: 11330072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Nudt7 decreases bile acid levels and peroxisomal fatty acid oxidation in the liver.
    Shumar SA; Kerr EW; Fagone P; Infante AM; Leonardi R
    J Lipid Res; 2019 May; 60(5):1005-1019. PubMed ID: 30846528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acyl-CoA thioesterase activity of peroxisomal ABC protein ABCD1 is required for the transport of very long-chain acyl-CoA into peroxisomes.
    Kawaguchi K; Mukai E; Watanabe S; Yamashita A; Morita M; So T; Imanaka T
    Sci Rep; 2021 Jan; 11(1):2192. PubMed ID: 33500543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The peroxisomal Acyl-CoA thioesterase Pte1p from Saccharomyces cerevisiae is required for efficient degradation of short straight chain and branched chain fatty acids.
    Maeda I; Delessert S; Hasegawa S; Seto Y; Zuber S; Poirier Y
    J Biol Chem; 2006 Apr; 281(17):11729-35. PubMed ID: 16490786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids.
    Yagita Y; Shinohara K; Abe Y; Nakagawa K; Al-Owain M; Alkuraya FS; Fujiki Y
    J Biol Chem; 2017 Jan; 292(2):691-705. PubMed ID: 27899449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxisomal acyl-CoA synthetases.
    Watkins PA; Ellis JM
    Biochim Biophys Acta; 2012 Sep; 1822(9):1411-20. PubMed ID: 22366061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and medium-chain carnitine acyltransferases and acyl-CoA thioesterases in mouse provide complementary systems for transport of beta-oxidation products out of peroxisomes.
    Westin MA; Hunt MC; Alexson SE
    Cell Mol Life Sci; 2008 Mar; 65(6):982-90. PubMed ID: 18264800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase.
    Jones JM; Gould SJ
    Biochem Biophys Res Commun; 2000 Aug; 275(1):233-40. PubMed ID: 10944470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carnitine acyltransferases and their role in modulating acyl-CoA pools.
    Ramsay RR; Arduini A
    Arch Biochem Biophys; 1993 May; 302(2):307-14. PubMed ID: 8489235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism.
    Tillander V; Alexson SEH; Cohen DE
    Trends Endocrinol Metab; 2017 Jul; 28(7):473-484. PubMed ID: 28385385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of carnitine acyltransferases and acyl-CoA beta-oxidation enzymes in small intestinal microperoxisomes (peroxisomes) of normal and clofibrate treated mice.
    Small GM; Burdett K; Connock MJ
    Biochem Int; 1983 Aug; 7(2):263-72. PubMed ID: 6679343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.