These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24389459)

  • 21. Wear mechanism of nanocrystalline metals.
    Qi Z; Jiang J; Meletis EI
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4227-32. PubMed ID: 19916435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically Driven Grain Boundary Formation in Nickel Nanowires.
    Wang L; Kong D; Zhang Y; Xiao L; Lu Y; Chen Z; Zhang Z; Zou J; Zhu T; Han X
    ACS Nano; 2017 Dec; 11(12):12500-12508. PubMed ID: 29131584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure Evolution and Mechanical Stability of Supersaturated Solid Solution Co-Rich Nanocrystalline Co-Cu Produced by Pulsed Electrodeposition.
    Pratama K; Barrirero J; Mücklich F; Motz C
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32521757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deformation-induced grain growth and twinning in nanocrystalline palladium thin films.
    Kobler A; Lohmiller J; Schäfer J; Kerber M; Castrup A; Kashiwar A; Gruber PA; Albe K; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2013; 4():554-66. PubMed ID: 24205451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental observations of stress-driven grain boundary migration.
    Rupert TJ; Gianola DS; Gan Y; Hemker KJ
    Science; 2009 Dec; 326(5960):1686-90. PubMed ID: 20019286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coarse graining and localized plasticity between sliding nanocrystalline metals.
    Romero PA; Järvi TT; Beckmann N; Mrovec M; Moseler M
    Phys Rev Lett; 2014 Jul; 113(3):036101. PubMed ID: 25083655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum.
    Li X; Wei Y; Yang W; Gao H
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Situ TEM Observation of Cooperative Grain Rotations and the Bauschinger Effect in Nanocrystalline Palladium.
    Kashiwar A; Hahn H; Kübel C
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength.
    Li Y; Raabe D; Herbig M; Choi PP; Goto S; Kostka A; Yarita H; Borchers C; Kirchheim R
    Phys Rev Lett; 2014 Sep; 113(10):106104. PubMed ID: 25238372
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Wang X; Zheng S; Deng C; Weinberger CR; Wang G; Mao SX
    Nano Lett; 2023 Jan; 23(2):514-522. PubMed ID: 36633548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion.
    Wu W; Song M; Ni S; Wang J; Liu Y; Liu B; Liao X
    Sci Rep; 2017 Apr; 7():46720. PubMed ID: 28429759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size Dependence of Grain Boundary Migration in Metals under Mechanical Loading.
    Zhou X; Li X; Lu K
    Phys Rev Lett; 2019 Mar; 122(12):126101. PubMed ID: 30978032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.