These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24389798)

  • 1. Surface treatment of flow channels in microfluidic devices fabricated by stereolithography.
    Ohtani K; Tsuchiya M; Sugiyama H; Katakura T; Hayakawa M; Kanai T
    J Oleo Sci; 2014; 63(1):93-6. PubMed ID: 24389798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional axisymmetric flow-focusing device using stereolithography.
    Morimoto Y; Tan WH; Takeuchi S
    Biomed Microdevices; 2009 Apr; 11(2):369-77. PubMed ID: 19009352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesive-based bonding technique for PDMS microfluidic devices.
    Thompson CS; Abate AR
    Lab Chip; 2013 Feb; 13(4):632-5. PubMed ID: 23282717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inkjet-printed microfluidic device for liquid-liquid extraction.
    Watanabe M
    Analyst; 2011 Apr; 136(7):1420-4. PubMed ID: 21290076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films.
    Brassard JD; Sarkar DK; Perron J
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3583-8. PubMed ID: 21870871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mastering a double emulsion in a simple co-flow microfluidic to generate complex polymersomes.
    Perro A; Nicolet C; Angly J; Lecommandoux S; Le Meins JF; Colin A
    Langmuir; 2011 Jul; 27(14):9034-42. PubMed ID: 21082804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-treated hydrophobic paper: an inexpensive microfluidic platform.
    Chitnis G; Ding Z; Chang CL; Savran CA; Ziaie B
    Lab Chip; 2011 Mar; 11(6):1161-5. PubMed ID: 21264372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.