These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 2438993)

  • 1. Reversible and irreversible nodal dysfunction in diabetic neuropathy.
    Brismar T; Sima AA; Greene DA
    Ann Neurol; 1987 May; 21(5):504-7. PubMed ID: 2438993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible diabetic nerve dysfunction: structural correlates to electrophysiological abnormalities.
    Sima AA; Brismar T
    Ann Neurol; 1985 Jul; 18(1):21-9. PubMed ID: 3898998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axo-glial dysjunction. A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic bio-breeding rat.
    Sima AA; Lattimer SA; Yagihashi S; Greene DA
    J Clin Invest; 1986 Feb; 77(2):474-84. PubMed ID: 3003160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats.
    Sima AA; Zhang W; Xu G; Sugimoto K; Guberski D; Yorek MA
    Diabetologia; 2000 Jun; 43(6):786-93. PubMed ID: 10907124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sodium-pump defect in diabetic peripheral nerve corrected by sorbinil administration: relationship to myo-inositol metabolism and nerve conduction slowing.
    Greene DA
    Metabolism; 1986 Apr; 35(4 Suppl 1):60-5. PubMed ID: 2421135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nodal Na(+)-channel displacement is associated with nerve-conduction slowing in the chronically diabetic BB/W rat: prevention by aldose reductase inhibition.
    Cherian PV; Kamijo M; Angelides KJ; Sima AA
    J Diabetes Complications; 1996; 10(4):192-200. PubMed ID: 8835918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-peptide prevents and improves chronic Type I diabetic polyneuropathy in the BB/Wor rat.
    Sima AA; Zhang W; Sugimoto K; Henry D; Li Z; Wahren J; Grunberger G
    Diabetologia; 2001 Jul; 44(7):889-97. PubMed ID: 11508275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide.
    Sima AA; Zhang W; Li ZG; Murakawa Y; Pierson CR
    Diabetes; 2004 Jun; 53(6):1556-63. PubMed ID: 15161761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism.
    Greene DA; Lattimer-Greene S; Sima AA
    Crit Rev Neurobiol; 1989; 5(2):143-219. PubMed ID: 2561904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral neuropathy in the WBN/Kob rat with chronic pancreatitis and spontaneous diabetes.
    Yagihashi S; Wada R; Kamijo M; Nagai K
    Lab Invest; 1993 Mar; 68(3):296-307. PubMed ID: 8383778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na,K-atpase alterations in diabetic rats: relationship with lipid metabolism and nerve physiological parameters.
    Djemli-Shipkolye A; Coste T; Raccah D; Vague P; Pieroni G; Gerbi A
    Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):297-304. PubMed ID: 11355004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental uremic neuropathy. Part 2. Sodium permeability decrease and inactivation in potential clamped nerve fibers.
    Brismar T; Tegnèr R
    J Neurol Sci; 1984 Jul; 65(1):37-45. PubMed ID: 6088705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy.
    Bordet T; Buisson B; Michaud M; Abitbol JL; Marchand F; Grist J; Andriambeloson E; Malcangio M; Pruss RM
    J Pharmacol Exp Ther; 2008 Aug; 326(2):623-32. PubMed ID: 18492948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-peptide, Na+,K(+)-ATPase, and diabetes.
    Vague P; Coste TC; Jannot MF; Raccah D; Tsimaratos M
    Exp Diabesity Res; 2004; 5(1):37-50. PubMed ID: 15198370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuropathy-functional abnormalities in the BB rat.
    Brismar T
    Metabolism; 1983 Jul; 32(7 Suppl 1):112-7. PubMed ID: 6865761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Na+/K+ adenosine triphosphatase activity and motor nerve conduction velocity in L-fucose-fed rats is reversible after dietary normalization.
    Yorek MA; Wiese TJ; Davidson EP; Dunlap JA; Conner CE
    Metabolism; 1996 Feb; 45(2):229-34. PubMed ID: 8596495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat.
    Sima AA; Ristic H; Merry A; Kamijo M; Lattimer SA; Stevens MJ; Greene DA
    J Clin Invest; 1996 Apr; 97(8):1900-7. PubMed ID: 8621774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve Na+-K+-ATPase, conduction, and myo-inositol in the insulin-deficient BB rat.
    Greene DA; Yagihashi S; Lattimer SA; Sima AA
    Am J Physiol; 1984 Oct; 247(4 Pt 1):E534-9. PubMed ID: 6093549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nodal gap substance in diabetic nerve.
    Seneviratne KN; Weerasuriya A
    J Neurol Neurosurg Psychiatry; 1974 May; 37(5):502-13. PubMed ID: 4276085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor conduction velocity (MCV) in insulin-dependent and non-insulin-dependent diabetics with and without clinical peripheral neuropathy.
    Fedele D; Negrin P; Fardin P; Tiengo A
    Diabete Metab; 1980 Sep; 6(3):189-92. PubMed ID: 7439492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.