BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 24390439)

  • 1. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate.
    Durisic N; Laparra-Cuervo L; Sandoval-Álvarez A; Borbely JS; Lakadamyali M
    Nat Methods; 2014 Feb; 11(2):156-62. PubMed ID: 24390439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal rulers to assess fluorescent protein photoactivation efficiency.
    Renz M; Wunder C
    Cytometry A; 2018 Apr; 93(4):411-419. PubMed ID: 29286574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
    Subach FV; Patterson GH; Manley S; Gillette JM; Lippincott-Schwartz J; Verkhusha VV
    Nat Methods; 2009 Feb; 6(2):153-9. PubMed ID: 19169259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography.
    Bourgeois D
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM).
    Lee SH; Shin JY; Lee A; Bustamante C
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):17436-41. PubMed ID: 23045631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Probe Photophysics in Localization-Based Superresolution Microscopy.
    Pennacchietti F; Gould TJ; Hess ST
    Biophys J; 2017 Nov; 113(9):2037-2054. PubMed ID: 29117527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Photophysical Properties of Photoactivatable Fluorescent Proteins for Super-Resolution Microscopy.
    Tao A; Zhang R; Yuan J
    J Phys Chem B; 2020 Mar; 124(10):1892-1897. PubMed ID: 32065748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data.
    Levet F; Hosy E; Kechkar A; Butler C; Beghin A; Choquet D; Sibarita JB
    Nat Methods; 2015 Nov; 12(11):1065-71. PubMed ID: 26344046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities.
    McEvoy AL; Hoi H; Bates M; Platonova E; Cranfill PJ; Baird MA; Davidson MW; Ewers H; Liphardt J; Campbell RE
    PLoS One; 2012; 7(12):e51314. PubMed ID: 23240015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoactivated structural dynamics of fluorescent proteins.
    Bourgeois D; Regis-Faro A; Adam V
    Biochem Soc Trans; 2012 Jun; 40(3):531-8. PubMed ID: 22616863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry of the human glycine receptor revealed by direct subunit counting.
    Durisic N; Godin AG; Wever CM; Heyes CD; Lakadamyali M; Dent JA
    J Neurosci; 2012 Sep; 32(37):12915-20. PubMed ID: 22973015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneously Blinking Fluorescent Protein for Simple Single Laser Super-Resolution Live Cell Imaging.
    Arai Y; Takauchi H; Ogami Y; Fujiwara S; Nakano M; Matsuda T; Nagai T
    ACS Chem Biol; 2018 Aug; 13(8):1938-1943. PubMed ID: 29963852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a green reversibly photoswitchable variant of Eos fluorescent protein with fixation resistance.
    Osuga M; Nishimura T; Suetsugu S
    Mol Biol Cell; 2021 Nov; 32(21):br7. PubMed ID: 34495704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent proteins for photoactivation experiments.
    Lippincott-Schwartz J; Patterson GH
    Methods Cell Biol; 2008; 85():45-61. PubMed ID: 18155458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfection of genetically encoded photoswitchable probes for STORM imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):537-9. PubMed ID: 23734026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically induced photoswitching of fluorescent probes--a general concept for super-resolution microscopy.
    Endesfelder U; Malkusch S; Flottmann B; Mondry J; Liguzinski P; Verveer PJ; Heilemann M
    Molecules; 2011 Apr; 16(4):3106-18. PubMed ID: 21490558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous multicolor imaging of biological structures with fluorescence photoactivation localization microscopy.
    Curthoys NM; Mlodzianoski MJ; Kim D; Hess ST
    J Vis Exp; 2013 Dec; (82):e50680. PubMed ID: 24378721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multitarget super-resolution microscopy with high-density labeling by exchangeable probes.
    Kiuchi T; Higuchi M; Takamura A; Maruoka M; Watanabe N
    Nat Methods; 2015 Aug; 12(8):743-6. PubMed ID: 26147917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization microscopy coming of age: from concepts to biological impact.
    Sauer M
    J Cell Sci; 2013 Aug; 126(Pt 16):3505-13. PubMed ID: 23950110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast.
    Young CL; Raden DL; Caplan JL; Czymmek KJ; Robinson AS
    Yeast; 2012 Mar; 29(3-4):119-36. PubMed ID: 22473760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.