These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24390462)

  • 41. Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery.
    De Vos S; Waegeneers N; Verleysen E; Smeets K; Mast J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Nov; 37(11):1831-1846. PubMed ID: 32946346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing silver nanoparticles behaviour in artificial seawater by mean of AF4 and spICP-MS.
    António DC; Cascio C; Jakšić Ž; Jurašin D; Lyons DM; Nogueira AJ; Rossi F; Calzolai L
    Mar Environ Res; 2015 Oct; 111():162-9. PubMed ID: 26008796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances.
    Addo Ntim S; Thomas TA; Noonan GO
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):905-12. PubMed ID: 27049753
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prospects and difficulties in TiO₂ nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry.
    López-Heras I; Madrid Y; Cámara C
    Talanta; 2014 Jun; 124():71-8. PubMed ID: 24767448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength.
    Delay M; Dolt T; Woellhaf A; Sembritzki R; Frimmel FH
    J Chromatogr A; 2011 Jul; 1218(27):4206-12. PubMed ID: 21435646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous determination of four coccidiostats in eggs and broiler meat: validation of an LC-MS/MS method.
    Rokka M; Peltonen K
    Food Addit Contam; 2006 May; 23(5):470-8. PubMed ID: 16644594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticle release from nano-silver antimicrobial food containers.
    Echegoyen Y; Nerín C
    Food Chem Toxicol; 2013 Dec; 62():16-22. PubMed ID: 23954768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment.
    Wei WJ; Yang Y; Li XY; Huang P; Wang Q; Yang PJ
    Talanta; 2022 Mar; 239():123117. PubMed ID: 34890942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single particle analysis of TiO
    Candás-Zapico S; Kutscher DJ; Montes-Bayón M; Bettmer J
    Talanta; 2018 Apr; 180():309-315. PubMed ID: 29332815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media.
    Philippe A; Schaumann GE
    PLoS One; 2014; 9(2):e90559. PubMed ID: 24587393
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach.
    Gagné F; André C; Skirrow R; Gélinas M; Auclair J; van Aggelen G; Turcotte P; Gagnon C
    Chemosphere; 2012 Oct; 89(5):615-22. PubMed ID: 22727896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gold and silver quantification from gold-silver nanoshells in HaCaT cells.
    Faucher S; Soulé S; Bulteau AL; Allouche J; Lespes G
    J Trace Elem Med Biol; 2018 May; 47():70-78. PubMed ID: 29544810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater.
    Cervantes-Avilés P; Huang Y; Keller AA
    Water Res; 2019 Dec; 166():115072. PubMed ID: 31525511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.
    Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Higgins CP; Ranville JF
    Anal Chem; 2011 Dec; 83(24):9361-9. PubMed ID: 22074486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An optimised method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry.
    Han H; Kim B; Lee SG; Kim J
    Food Chem; 2013 Sep; 140(1-2):44-51. PubMed ID: 23578613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging.
    Zhai X; Li Z; Shi J; Huang X; Sun Z; Zhang D; Zou X; Sun Y; Zhang J; Holmes M; Gong Y; Povey M; Wang S
    Food Chem; 2019 Aug; 290():135-143. PubMed ID: 31000029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.
    Feichtmeier NS; Leopold K
    Anal Bioanal Chem; 2014 Jun; 406(16):3887-94. PubMed ID: 24292434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative study of extraction methods of silver species from faeces of animals fed with silver-based nanomaterials.
    Jiménez MS; Bakir M; Ben-Jeddou K; Bolea E; Pérez-Arantegui J; Laborda F
    Mikrochim Acta; 2023 May; 190(6):204. PubMed ID: 37160774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of on-line detectors for field flow fractionation analysis of nanomaterials.
    Bednar AJ; Poda AR; Mitrano DM; Kennedy AJ; Gray EP; Ranville JF; Hayes CA; Crocker FH; Steevens JA
    Talanta; 2013 Jan; 104():140-8. PubMed ID: 23597901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.