BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24390494)

  • 1. The effects of internal and receptor pH on the rate of drug release from water-in-oil emulsions.
    Fujihira A; Shimizu N
    Chem Pharm Bull (Tokyo); 2014; 62(1):64-71. PubMed ID: 24390494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cationic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 2000; 2(3):E28. PubMed ID: 11741244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of surfactant micelles to alter the physical location and reactivity of iron in oil-in-water emulsion.
    Cho YJ; McClements DJ; Decker EA
    J Agric Food Chem; 2002 Sep; 50(20):5704-10. PubMed ID: 12236702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions.
    Richards MP; Chaiyasit W; McClements DJ; Decker EA
    J Agric Food Chem; 2002 Feb; 50(5):1254-9. PubMed ID: 11853513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion.
    Hung CF; Fang CL; Liao MH; Fang JY
    Int J Pharm; 2007 Apr; 335(1-2):193-202. PubMed ID: 17129692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nonionic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 2000; 2(3):E30. PubMed ID: 11741246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-emulsifying pellets: relations between kinetic parameters of drug release and emulsion reconstitution-influence of formulation variables.
    Nikolakakis I; Malamataris S
    J Pharm Sci; 2014 May; 103(5):1453-65. PubMed ID: 24596121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple and Noninvasive DOSY NMR Method for Droplet Size Measurement of Intact Oil-In-Water Emulsion Drug Products.
    Patil SM; Li V; Peng J; Kozak D; Xu J; Cai B; Keire DA; Chen K
    J Pharm Sci; 2019 Feb; 108(2):815-820. PubMed ID: 30291851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.
    Bhowal S; Priyanka BS; Rastogi NK
    Biotechnol Prog; 2014; 30(5):1084-92. PubMed ID: 24930827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.
    Sakai K; Obata K; Yoshikawa M; Takano R; Shibata M; Maeda H; Mizutani A; Terada K
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1254-61. PubMed ID: 22339057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citral stability in oil-in-water emulsions with solid or liquid octadecane.
    Mei L; Choi SJ; Alamed J; Henson L; Popplewell M; McClements DJ; Decker EA
    J Agric Food Chem; 2010 Jan; 58(1):533-6. PubMed ID: 19911843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability.
    Feng J; Chen Q; Wu X; Jafari SM; McClements DJ
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21742-21751. PubMed ID: 29790050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of surfactant type, pH, and chelators on the oxidation of salmon oil-in-water emulsions.
    Mancuso JR; McClements DJ; Decker EA
    J Agric Food Chem; 1999 Oct; 47(10):4112-6. PubMed ID: 10552775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.
    Palencia M; Rivas BL
    J Colloid Interface Sci; 2011 Nov; 363(2):682-9. PubMed ID: 21855082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-ionic surfactant vesicle-in-water-in-oil (v/w/o) system: potential uses in drug and vaccine delivery.
    Yoshioka T; Skalko N; Gursel M; Gregoriadis G; Florence AT
    J Drug Target; 1995; 2(6):533-9. PubMed ID: 7773616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.
    Chen Q; Deng X; An Z
    Macromol Rapid Commun; 2014 Jun; 35(12):1148-52. PubMed ID: 24700484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).
    Zhang T; Xu Z; Cai Z; Guo Q
    Phys Chem Chem Phys; 2015 Jun; 17(24):16033-9. PubMed ID: 26028420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram.
    Syed HK; Peh KK
    Acta Pol Pharm; 2014; 71(2):301-9. PubMed ID: 25272651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.