These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 2439076)

  • 21. Regulation of (Ca2+, Mg2+)-ATPase in human erythrocytes dependent on calcium and calmodulin.
    Scharff O
    Acta Biol Med Ger; 1981; 40(4-5):457-63. PubMed ID: 6118990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium transport and adenosine triphosphatase activities of erythrocyte membranes in congenital spherocytosis.
    Johnsson R; Santaholma S; Saris NE
    Scand J Clin Lab Invest; 1978 Apr; 38(2):121-5. PubMed ID: 148726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of Ca2+ on glucose penetration through the pink ghosts of human erythrocytes].
    Matus VK; Kozlova NM; Chernitskiĭ EA
    Biofizika; 1979; 24(2):242-7. PubMed ID: 444601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A calmodulin activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles.
    Pape L; Kristensen BI
    Biochim Biophys Acta; 1984 Feb; 770(1):1-6. PubMed ID: 6320879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ca2+-activated K+ permeability in human erythrocytes: modulation of single-channel events.
    Grygorczyk R; Schwarz W
    Eur Biophys J; 1985; 12(2):57-65. PubMed ID: 2410247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of Ca2+-dependent K+ transport by modifications of the NAD+/NADH ratio in intact human red cells.
    Alvarez J; Camaleño JM; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1986 Apr; 856(2):408-11. PubMed ID: 2420363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence against involvement of the human erythrocyte plasma membrane Ca2+-ATPase in Ca2+-dependent K+ transport.
    Verma AK; Penniston JT
    Biochim Biophys Acta; 1985 Apr; 815(1):135-8. PubMed ID: 2580556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasma membrane nadh dehydrogenase and Ca2+-dependent potassium transport in erythrocytes of several animal species.
    Miner C; López-Burillo S; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1983 Jan; 727(2):266-72. PubMed ID: 6404302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1984 Mar; 771(1):23-7. PubMed ID: 6322845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels.
    Abia A; Lobatón CD; Moreno A; García-Sancho J
    Biochim Biophys Acta; 1986 Apr; 856(2):403-7. PubMed ID: 2420362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of vanadium action on selective K+-permeability in human erythrocytes.
    Fuhrmann GF; Hüttermann J; Knauf PA
    Biochim Biophys Acta; 1984 Jan; 769(1):130-40. PubMed ID: 6419778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of vanadate, menadione and menadione analogs on the Ca2+-activated K+ channels in human red cells. Possible relations to membrane-bound oxidoreductase activity.
    Fuhrmann GF; Schwarz W; Kersten R; Sdun H
    Biochim Biophys Acta; 1985 Nov; 820(2):223-34. PubMed ID: 2413892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of human erythrocyte cytoskeletal ATPase.
    Sato S; Jinbu Y; Nakao M
    J Biochem; 1986 Sep; 100(3):643-9. PubMed ID: 2946669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the Ca2+- or Pb2+-activated K+-selective channels in human red cells. II. Parallelisms to modulation of the activity of a membrane-bound oxidoreductase.
    Fehlau R; Grygorczyk R; Fuhrmann GF; Schwarz W
    Biochim Biophys Acta; 1989 Jan; 978(1):37-42. PubMed ID: 2914129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasma membrane Ca2+ transport: stimulation by soluble proteins.
    Hinds TR; Larsen FL; Vincenzi FF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):455-61. PubMed ID: 149540
    [No Abstract]   [Full Text] [Related]  

  • 36. Is the Ca2+-sensitive K+ channel under metabolic control in human red cells?
    Romero PJ
    Biochim Biophys Acta; 1978 Feb; 507(1):178-81. PubMed ID: 623747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of human erythrocyte insulin binding and adenosinetriphosphatase activity.
    Carter L; Gambhir KK; Hart CB; Curry CL; Mehrotra PP
    J Natl Med Assoc; 1988 Mar; 80(3):299-304. PubMed ID: 2965253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of Ca2+-dependent K+ channels by lead in one-step inside-out vesicles from human red cell membranes.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1986 May; 857(2):291-4. PubMed ID: 2423128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Transport mechanisms across the biological membranes].
    Hamasaki N
    Rinsho Byori; 1991 Sep; Suppl 91():47-58. PubMed ID: 1721939
    [No Abstract]   [Full Text] [Related]  

  • 40. Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells.
    Szász I; Sarkadi B; Gárdos G
    J Membr Biol; 1977 Jun; 35(1):75-93. PubMed ID: 886606
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.