These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2439136)

  • 1. Cell disaggregation behavior in shear flow.
    Snabre P; Bitbol M; Mills P
    Biophys J; 1987 May; 51(5):795-807. PubMed ID: 2439136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound scattering from concentrated suspensions of aggregated red cells in shear flow.
    Haider L; Snabre P; Boynard M
    Clin Hemorheol Microcirc; 2004; 30(3-4):345-52. PubMed ID: 15258365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up.
    Tees DF; Coenen O; Goldsmith HL
    Biophys J; 1993 Sep; 65(3):1318-34. PubMed ID: 8241411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of human red blood cells after moderate heat treatment.
    Snabre P; Baümler H; Mills P
    Biorheology; 1985; 22(3):185-95. PubMed ID: 2412611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microrheology and light transmission of blood. IV. The kinetics of artificial red cell aggregation induced by Dextran.
    Volger E; Schmid-Schönbein H; Gosen Jv; Klose HJ; Kline KA
    Pflugers Arch; 1975; 354(4):319-37. PubMed ID: 1167684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Increase of erythrocyte disaggregation shear rate in arterial hypertension].
    Razavian SM; Del-Pino M; Chabanel A; Simon A; Levenson J
    Arch Mal Coeur Vaiss; 1991 Aug; 84(8):1081-3. PubMed ID: 1953253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing red cell flow orientation shown by changes in blood reflectivity.
    McMillan DE; Utterback NG; Lee MM
    Biorheology; 1988; 25(4):675-84. PubMed ID: 3252920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheo-acoustical study of the shear disruption of reversible aggregates. Ultrasound scattering from concentrated suspensions of red cell aggregates.
    Haider L; Snabre P; Boynard M
    J Acoust Soc Am; 2000 Mar; 107(3):1715-26. PubMed ID: 10738823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase in erythrocyte disaggregation shear stress in hypertension.
    Razavian SM; Del Pino M; Simon A; Levenson J
    Hypertension; 1992 Aug; 20(2):247-52. PubMed ID: 1639467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy balance in red cell interactions.
    Chien S; Sung LA; Simchon S; Lee MM; Jan KM; Skalak R
    Ann N Y Acad Sci; 1983; 416():190-206. PubMed ID: 6203456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of erythrocytes under shear: a small-angle light scattering study.
    Mazeron P; Muller S; el Azouzi H
    Biorheology; 1997; 34(2):99-110. PubMed ID: 9373393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irregular changes in the structure of flowing blood at low flow conditions.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Ann Biomed Eng; 2009 Dec; 37(12):2488-96. PubMed ID: 19763826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.