These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2439141)

  • 1. [Dipyroxime as a blocker of ion channels activated by acetylcholine in rat skeletal muscle].
    Giniatullin RA; Shabunova IA; Nikol'skiĭ EE; Bukharaeva EA
    Biull Eksp Biol Med; 1987 Jun; 103(6):690-2. PubMed ID: 2439141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Reactivating and cholinolytic action of dipyroxime in the myoneural synapse of warm-blooded animals].
    Giniatullin RA; Shabunova IA; Nikol'skiĭ EN; Bukharaeva EA
    Neirofiziologiia; 1988; 20(3):351-7. PubMed ID: 3173579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of edrophonium, physostigmine and methanesulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex.
    Fiekers JF
    J Pharmacol Exp Ther; 1985 Sep; 234(3):539-49. PubMed ID: 2411911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Features of ion currents induced by acetylcholine in the muscle fibers of the lamprey].
    Fedorov VV; Snetkov VA; Magazanik LG
    Neirofiziologiia; 1983; 15(4):428-31. PubMed ID: 6312342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of chloramphenicol isomers on the motor end-plate nicotinic receptor-ion channel complex.
    Henderson F; Prior C; Dempster J; Marshall IG
    Mol Pharmacol; 1986 Jan; 29(1):52-64. PubMed ID: 2418348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Electrophysiological and biochemical studies.
    Ikeda SR; Aronstam RS; Daly JW; Aracava Y; Albuquerque EX
    Mol Pharmacol; 1984 Sep; 26(2):293-303. PubMed ID: 6090884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of the density of cholinoreceptors in the mechanisms slowing a drop in the postsynaptic current].
    Ginatullin RA; Khazipov RN
    Biull Eksp Biol Med; 1988 Aug; 106(8):134-6. PubMed ID: 3416047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Features of the postsynaptic potentials and ion currents in synapses of fast and slow rat muscle fibers].
    Fedorov VV
    Neirofiziologiia; 1980; 12(6):627-36. PubMed ID: 6255356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Miniature currents of the endplates of the muscle fibers of the diaphragm of the rat after inhibition of acetylcholinesterase with galanthamine].
    Krivoĭ II; Kuleshov VI; Matiushkin DP; Sanotskiĭ VI; Seĭ TP
    Neirofiziologiia; 1985; 17(5):607-14. PubMed ID: 2999623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Analysis of single-channel currents.
    Aracava Y; Ikeda SR; Daly JW; Brookes N; Albuquerque EX
    Mol Pharmacol; 1984 Sep; 26(2):304-13. PubMed ID: 6090885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. II. Postsynaptic considerations.
    Fiekers JF
    J Pharmacol Exp Ther; 1983 Jun; 225(3):496-502. PubMed ID: 6306208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction.
    Maleque MA; Souccar C; Cohen JB; Albuquerque EX
    Mol Pharmacol; 1982 Nov; 22(3):636-47. PubMed ID: 6296656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the properties of synaptic channels opened by acetylcholine in denervated frog muscle.
    Reiser G; Miledi R
    Brain Res; 1989 Feb; 479(1):83-97. PubMed ID: 2466537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the quantal composition, membrane potential and cholinoreceptor density on the temporal flow of the end plate current in the rat under conditions of acetylcholinesterase inhibition].
    Giniatullin RA; Shvetsov AB
    Neirofiziologiia; 1992; 24(3):269-79. PubMed ID: 1513401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The characteristics of the action of calcium ions on miniature end-plate currents after the disruption of mediator hydrolysis].
    Giniatullin RA; Khazipov RN
    Neirofiziologiia; 1990; 22(4):556-9. PubMed ID: 2284030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholinesterase reactivators modify the functional properties of the nicotinic acetylcholine receptor ion channel.
    Alkondon M; Rao KS; Albuquerque EX
    J Pharmacol Exp Ther; 1988 May; 245(2):543-56. PubMed ID: 2452874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of Schwann-cell miniature end-plate currents in denervated frog muscle.
    Reiser G; Miledi R
    Pflugers Arch; 1988 Jul; 412(1-2):22-8. PubMed ID: 2459657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Postsynaptic potentiation of miniature currents of muscle fiber endplates in the rat diaphragm. The effect of an acetylcholinesterase inhibitor, temperature and curare].
    Krivoĭ II; Seĭ TP
    Neirofiziologiia; 1987; 19(4):504-12. PubMed ID: 2821414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nonoxime bispyridinium compound SAD-128 alters the kinetic properties of the nicotinic acetylcholine receptor ion channel: a possible mechanism for antidotal effects.
    Alkondon M; Albuquerque EX
    J Pharmacol Exp Ther; 1989 Sep; 250(3):842-52. PubMed ID: 2476549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine-induced ionic channels in rat skeletal muscle.
    Sakmann B
    Fed Proc; 1978 Oct; 37(12):2654-9. PubMed ID: 212327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.