BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 24391516)

  • 1. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism.
    Robles MS; Cox J; Mann M
    PLoS Genet; 2014 Jan; 10(1):e1004047. PubMed ID: 24391516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic approaches in circadian biology.
    Robles MS; Mann M
    Handb Exp Pharmacol; 2013; (217):389-407. PubMed ID: 23604489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.
    Mauvoisin D; Wang J; Jouffe C; Martin E; Atger F; Waridel P; Quadroni M; Gachon F; Naef F
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):167-72. PubMed ID: 24344304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms and proteomics: It's all about posttranslational modifications!
    Mauvoisin D
    Wiley Interdiscip Rev Syst Biol Med; 2019 Sep; 11(5):e1450. PubMed ID: 31034157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
    Castelo-Szekely V; Arpat AB; Janich P; Gatfield D
    Genome Biol; 2017 Jun; 18(1):116. PubMed ID: 28622766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways.
    Choudhary MK; Nomura Y; Wang L; Nakagami H; Somers DE
    Mol Cell Proteomics; 2015 Aug; 14(8):2243-60. PubMed ID: 26091701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics in Circadian Biology.
    Mauvoisin D; Gachon F
    J Mol Biol; 2020 May; 432(12):3565-3577. PubMed ID: 31843517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways.
    Hurley JM; Jankowski MS; De Los Santos H; Crowell AM; Fordyce SB; Zucker JD; Kumar N; Purvine SO; Robinson EW; Shukla A; Zink E; Cannon WR; Baker SE; Loros JJ; Dunlap JC
    Cell Syst; 2018 Dec; 7(6):613-626.e5. PubMed ID: 30553726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian time series proteomics reveals daily dynamics in cartilage physiology.
    Dudek M; Angelucci C; Pathiranage D; Wang P; Mallikarjun V; Lawless C; Swift J; Kadler KE; Boot-Handford RP; Hoyland JA; Lamande SR; Bateman JF; Meng QJ
    Osteoarthritis Cartilage; 2021 May; 29(5):739-749. PubMed ID: 33610821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology.
    Robles MS; Humphrey SJ; Mann M
    Cell Metab; 2017 Jan; 25(1):118-127. PubMed ID: 27818261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver.
    Wang J; Symul L; Yeung J; Gobet C; Sobel J; Lück S; Westermark PO; Molina N; Naef F
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):E1916-E1925. PubMed ID: 29432155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian orchestration of the hepatic proteome.
    Reddy AB; Karp NA; Maywood ES; Sage EA; Deery M; O'Neill JS; Wong GK; Chesham J; Odell M; Lilley KS; Kyriacou CP; Hastings MH
    Curr Biol; 2006 Jun; 16(11):1107-15. PubMed ID: 16753565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock.
    Parnell AA; De Nobrega AK; Lyons LC
    Cell Signal; 2021 Apr; 80():109904. PubMed ID: 33370580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis.
    Gréchez-Cassiau A; Feillet C; Guérin S; Delaunay F
    Chronobiol Int; 2015; 32(6):774-84. PubMed ID: 26125130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.
    Montenegro-Montero A; Larrondo LF
    J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Circadian proteomics].
    Gachon F
    Biol Aujourdhui; 2018; 212(3-4):55-59. PubMed ID: 30973132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Analysis of the Mouse Cerebellum Proteome.
    Plumel M; Dumont S; Maes P; Sandu C; Felder-Schmittbuhl MP; Challet E; Bertile F
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30991638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of deadenylation in regulating poly(A) rhythms and circadian gene expression.
    Yao X; Kojima S; Chen J
    PLoS Comput Biol; 2020 Apr; 16(4):e1007842. PubMed ID: 32339166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian genomics reveal a role for post-transcriptional regulation in mammals.
    Kojima S; Green CB
    Biochemistry; 2015 Jan; 54(2):124-33. PubMed ID: 25303020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.