These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 24391516)

  • 1. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism.
    Robles MS; Cox J; Mann M
    PLoS Genet; 2014 Jan; 10(1):e1004047. PubMed ID: 24391516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic approaches in circadian biology.
    Robles MS; Mann M
    Handb Exp Pharmacol; 2013; (217):389-407. PubMed ID: 23604489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.
    Mauvoisin D; Wang J; Jouffe C; Martin E; Atger F; Waridel P; Quadroni M; Gachon F; Naef F
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):167-72. PubMed ID: 24344304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian rhythms and proteomics: It's all about posttranslational modifications!
    Mauvoisin D
    Wiley Interdiscip Rev Syst Biol Med; 2019 Sep; 11(5):e1450. PubMed ID: 31034157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
    Castelo-Szekely V; Arpat AB; Janich P; Gatfield D
    Genome Biol; 2017 Jun; 18(1):116. PubMed ID: 28622766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Circadian Phosphoproteomic Analysis of Arabidopsis Reveals Extensive Clock Control of Key Components in Physiological, Metabolic, and Signaling Pathways.
    Choudhary MK; Nomura Y; Wang L; Nakagami H; Somers DE
    Mol Cell Proteomics; 2015 Aug; 14(8):2243-60. PubMed ID: 26091701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics in Circadian Biology.
    Mauvoisin D; Gachon F
    J Mol Biol; 2020 May; 432(12):3565-3577. PubMed ID: 31843517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways.
    Hurley JM; Jankowski MS; De Los Santos H; Crowell AM; Fordyce SB; Zucker JD; Kumar N; Purvine SO; Robinson EW; Shukla A; Zink E; Cannon WR; Baker SE; Loros JJ; Dunlap JC
    Cell Syst; 2018 Dec; 7(6):613-626.e5. PubMed ID: 30553726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian time series proteomics reveals daily dynamics in cartilage physiology.
    Dudek M; Angelucci C; Pathiranage D; Wang P; Mallikarjun V; Lawless C; Swift J; Kadler KE; Boot-Handford RP; Hoyland JA; Lamande SR; Bateman JF; Meng QJ
    Osteoarthritis Cartilage; 2021 May; 29(5):739-749. PubMed ID: 33610821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology.
    Robles MS; Humphrey SJ; Mann M
    Cell Metab; 2017 Jan; 25(1):118-127. PubMed ID: 27818261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver.
    Wang J; Symul L; Yeung J; Gobet C; Sobel J; Lück S; Westermark PO; Molina N; Naef F
    Proc Natl Acad Sci U S A; 2018 Feb; 115(8):E1916-E1925. PubMed ID: 29432155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian orchestration of the hepatic proteome.
    Reddy AB; Karp NA; Maywood ES; Sage EA; Deery M; O'Neill JS; Wong GK; Chesham J; Odell M; Lilley KS; Kyriacou CP; Hastings MH
    Curr Biol; 2006 Jun; 16(11):1107-15. PubMed ID: 16753565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock.
    Parnell AA; De Nobrega AK; Lyons LC
    Cell Signal; 2021 Apr; 80():109904. PubMed ID: 33370580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hepatic circadian clock regulates the choline kinase α gene through the BMAL1-REV-ERBα axis.
    Gréchez-Cassiau A; Feillet C; Guérin S; Delaunay F
    Chronobiol Int; 2015; 32(6):774-84. PubMed ID: 26125130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.
    Montenegro-Montero A; Larrondo LF
    J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Circadian proteomics].
    Gachon F
    Biol Aujourdhui; 2018; 212(3-4):55-59. PubMed ID: 30973132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Analysis of the Mouse Cerebellum Proteome.
    Plumel M; Dumont S; Maes P; Sandu C; Felder-Schmittbuhl MP; Challet E; Bertile F
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30991638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical role of deadenylation in regulating poly(A) rhythms and circadian gene expression.
    Yao X; Kojima S; Chen J
    PLoS Comput Biol; 2020 Apr; 16(4):e1007842. PubMed ID: 32339166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian genomics reveal a role for post-transcriptional regulation in mammals.
    Kojima S; Green CB
    Biochemistry; 2015 Jan; 54(2):124-33. PubMed ID: 25303020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.