These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 24391516)
21. Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. Wang J; Mauvoisin D; Martin E; Atger F; Galindo AN; Dayon L; Sizzano F; Palini A; Kussmann M; Waridel P; Quadroni M; Dulić V; Naef F; Gachon F Cell Metab; 2017 Jan; 25(1):102-117. PubMed ID: 27818260 [TBL] [Abstract][Full Text] [Related]
22. Ribosome profiling reveals an important role for translational control in circadian gene expression. Jang C; Lahens NF; Hogenesch JB; Sehgal A Genome Res; 2015 Dec; 25(12):1836-47. PubMed ID: 26338483 [TBL] [Abstract][Full Text] [Related]
23. Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m Zhong X; Yu J; Frazier K; Weng X; Li Y; Cham CM; Dolan K; Zhu X; Hubert N; Tao Y; Lin F; Martinez-Guryn K; Huang Y; Wang T; Liu J; He C; Chang EB; Leone V Cell Rep; 2018 Nov; 25(7):1816-1828.e4. PubMed ID: 30428350 [TBL] [Abstract][Full Text] [Related]
24. Rhythmic Food Intake Drives Rhythmic Gene Expression More Potently than the Hepatic Circadian Clock in Mice. Greenwell BJ; Trott AJ; Beytebiere JR; Pao S; Bosley A; Beach E; Finegan P; Hernandez C; Menet JS Cell Rep; 2019 Apr; 27(3):649-657.e5. PubMed ID: 30995463 [TBL] [Abstract][Full Text] [Related]
25. Emerging Roles of Translational Control in Circadian Timekeeping. Castelo-Szekely V; Gatfield D J Mol Biol; 2020 May; 432(12):3483-3497. PubMed ID: 32246961 [TBL] [Abstract][Full Text] [Related]
26. Molecular modulators of the circadian clock: lessons from flies and mice. Mendoza-Viveros L; Bouchard-Cannon P; Hegazi S; Cheng AH; Pastore S; Cheng HM Cell Mol Life Sci; 2017 Mar; 74(6):1035-1059. PubMed ID: 27689221 [TBL] [Abstract][Full Text] [Related]
27. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver. Gong C; Li C; Qi X; Song Z; Wu J; Hughes ME; Li X Chronobiol Int; 2015; 32(9):1254-63. PubMed ID: 26512910 [TBL] [Abstract][Full Text] [Related]
28. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus. Filiano AN; Millender-Swain T; Johnson R; Young ME; Gamble KL; Bailey SM PLoS One; 2013; 8(8):e71684. PubMed ID: 23951220 [TBL] [Abstract][Full Text] [Related]
29. Spotlight on post-transcriptional control in the circadian system. Staiger D; Köster T Cell Mol Life Sci; 2011 Jan; 68(1):71-83. PubMed ID: 20803230 [TBL] [Abstract][Full Text] [Related]
30. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila. Li J; Yu RY; Emran F; Chen BE; Hughes ME J Biol Rhythms; 2019 Apr; 34(2):131-143. PubMed ID: 30803307 [TBL] [Abstract][Full Text] [Related]
31. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach. Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081 [TBL] [Abstract][Full Text] [Related]
32. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Unruh BA; Weidemann DE; Miao L; Kojima S Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2314690121. PubMed ID: 38315868 [TBL] [Abstract][Full Text] [Related]
33. Daily rhythms in the cyanobacterium synechococcus elongatus probed by high-resolution mass spectrometry-based proteomics reveals a small defined set of cyclic proteins. Guerreiro AC; Benevento M; Lehmann R; van Breukelen B; Post H; Giansanti P; Maarten Altelaar AF; Axmann IM; Heck AJ Mol Cell Proteomics; 2014 Aug; 13(8):2042-55. PubMed ID: 24677030 [TBL] [Abstract][Full Text] [Related]
34. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Caster SZ; Castillo K; Sachs MS; Bell-Pedersen D Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9605-10. PubMed ID: 27506798 [TBL] [Abstract][Full Text] [Related]
35. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. Ramanathan C; Khan SK; Kathale ND; Xu H; Liu AC J Vis Exp; 2012 Sep; (67):. PubMed ID: 23052244 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome comparison between fetal and adult mouse livers: implications for circadian clock mechanisms. Li C; Yu S; Zhong X; Wu J; Li X PLoS One; 2012; 7(2):e31292. PubMed ID: 22363607 [TBL] [Abstract][Full Text] [Related]
37. O-GlcNAcylation of PERIOD regulates its interaction with CLOCK and timing of circadian transcriptional repression. Li YH; Liu X; Vanselow JT; Zheng H; Schlosser A; Chiu JC PLoS Genet; 2019 Jan; 15(1):e1007953. PubMed ID: 30703153 [TBL] [Abstract][Full Text] [Related]
38. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Atger F; Mauvoisin D; Weger B; Gobet C; Gachon F Front Endocrinol (Lausanne); 2017; 8():42. PubMed ID: 28337174 [TBL] [Abstract][Full Text] [Related]
39. Modeling the interactions of sense and antisense Period transcripts in the mammalian circadian clock network. Battogtokh D; Kojima S; Tyson JJ PLoS Comput Biol; 2018 Feb; 14(2):e1005957. PubMed ID: 29447160 [TBL] [Abstract][Full Text] [Related]
40. RNA-based regulation in the plant circadian clock. Staiger D; Green R Trends Plant Sci; 2011 Oct; 16(10):517-23. PubMed ID: 21782493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]