These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 24391797)
1. An IDEA for short term outbreak projection: nearcasting using the basic reproduction number. Fisman DN; Hauck TS; Tuite AR; Greer AL PLoS One; 2013; 8(12):e83622. PubMed ID: 24391797 [TBL] [Abstract][Full Text] [Related]
2. Unraveling R0: considerations for public health applications. Ridenhour B; Kowalik JM; Shay DK Am J Public Health; 2014 Feb; 104(2):e32-41. PubMed ID: 24328646 [TBL] [Abstract][Full Text] [Related]
3. [Unraveling R₀: considerations for public health applications]. Ridenhour B; Kowalik JM; Shay DK Rev Panam Salud Publica; 2015 Aug; 38(2):167-76. PubMed ID: 26581059 [TBL] [Abstract][Full Text] [Related]
4. A Bayesian inferential approach to quantify the transmission intensity of disease outbreak. Kadi AS; Avaradi SR Comput Math Methods Med; 2015; 2015():256319. PubMed ID: 25784956 [TBL] [Abstract][Full Text] [Related]
5. Early real-time estimation of the basic reproduction number of emerging or reemerging infectious diseases in a community with heterogeneous contact pattern: Using data from Hong Kong 2009 H1N1 Pandemic Influenza as an illustrative example. Kwok KO; Davoudi B; Riley S; Pourbohloul B PLoS One; 2015; 10(9):e0137959. PubMed ID: 26372219 [TBL] [Abstract][Full Text] [Related]
6. Richards model revisited: validation by and application to infection dynamics. Wang XS; Wu J; Yang Y J Theor Biol; 2012 Nov; 313():12-9. PubMed ID: 22889641 [TBL] [Abstract][Full Text] [Related]
7. Estimation of the Basic Reproductive Number and Mean Serial Interval of a Novel Pathogen in a Small, Well-Observed Discrete Population. Wu KM; Riley S PLoS One; 2016; 11(2):e0148061. PubMed ID: 26849644 [TBL] [Abstract][Full Text] [Related]
8. Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. White LF; Wallinga J; Finelli L; Reed C; Riley S; Lipsitch M; Pagano M Influenza Other Respir Viruses; 2009 Nov; 3(6):267-76. PubMed ID: 19903209 [TBL] [Abstract][Full Text] [Related]
9. Inferring epidemiological dynamics of infectious diseases using Tajima's D statistic on nucleotide sequences of pathogens. Kim K; Omori R; Ito K Epidemics; 2017 Dec; 21():21-29. PubMed ID: 28552262 [TBL] [Abstract][Full Text] [Related]
10. A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. Ogi-Gittins I; Hart WS; Song J; Nash RK; Polonsky J; Cori A; Hill EM; Thompson RN Epidemics; 2024 Jun; 47():100773. PubMed ID: 38781911 [TBL] [Abstract][Full Text] [Related]
11. Epidemic modelling: aspects where stochasticity matters. Britton T; Lindenstrand D Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097 [TBL] [Abstract][Full Text] [Related]
12. Effective reproduction numbers are commonly overestimated early in a disease outbreak. Mercer GN; Glass K; Becker NG Stat Med; 2011 Apr; 30(9):984-94. PubMed ID: 21284013 [TBL] [Abstract][Full Text] [Related]
13. High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea. Choi S; Jung E; Choi BY; Hur YJ; Ki M J Hosp Infect; 2018 Jun; 99(2):162-168. PubMed ID: 28958834 [TBL] [Abstract][Full Text] [Related]
14. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Griffin JT; Garske T; Ghani AC; Clarke PS Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771 [TBL] [Abstract][Full Text] [Related]
15. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Thompson RN; Stockwin JE; van Gaalen RD; Polonsky JA; Kamvar ZN; Demarsh PA; Dahlqwist E; Li S; Miguel E; Jombart T; Lessler J; Cauchemez S; Cori A Epidemics; 2019 Dec; 29():100356. PubMed ID: 31624039 [TBL] [Abstract][Full Text] [Related]
16. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. Parag KV PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011 [TBL] [Abstract][Full Text] [Related]
17. Estimating the basic reproductive number during the early stages of an emerging epidemic. Rebuli NP; Bean NG; Ross JV Theor Popul Biol; 2018 Feb; 119():26-36. PubMed ID: 29102543 [TBL] [Abstract][Full Text] [Related]
18. An operational epidemiological model for calibrating agent-based simulations of pandemic influenza outbreaks. Prieto D; Das TK Health Care Manag Sci; 2016 Mar; 19(1):1-19. PubMed ID: 24710651 [TBL] [Abstract][Full Text] [Related]
19. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China. Yang F; Yuan L; Tan X; Huang C; Feng J Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708 [TBL] [Abstract][Full Text] [Related]
20. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009. Nishiura H; Chowell G; Safan M; Castillo-Chavez C Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]