These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24391802)

  • 1. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.
    Wahidullah S; Naik DN; Devi P
    PLoS One; 2013; 8(12):e83647. PubMed ID: 24391802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of citrinin to decarboxycitrinin using an organic solvent-tolerant marine bacterium, Moraxella sp. MB1.
    Devi P; Naik CG; Rodrigues C
    Mar Biotechnol (NY); 2006; 8(2):129-38. PubMed ID: 16467989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of the textile dye Mordant Black 17 (Calcon) by Moraxella osloensis isolated from textile effluent-contaminated site.
    Karunya A; Rose C; Valli Nachiyar C
    World J Microbiol Biotechnol; 2014 Mar; 30(3):915-24. PubMed ID: 24170439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid-mediated degradation of hydroxylated, methoxylated, and carboxylated benzene derivatives in Moraxella sp.
    Vasudevan N; Paulraj LS
    Ann N Y Acad Sci; 1994 May; 721():399-406. PubMed ID: 8010688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.
    Maeda AH; Nishi S; Hatada Y; Ozeki Y; Kanaly RA
    Microb Biotechnol; 2014 Mar; 7(2):114-29. PubMed ID: 24325265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of capillary electrophoresis-laser induced fluorescence as a tool in the characterization of sewage effluent for fluorescent acids: determination of salicylic acid.
    Flaherty S; Wark S; Street G; Farley JW; Brumley WC
    Electrophoresis; 2002 Jul; 23(14):2327-32. PubMed ID: 12210239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme.
    Iwasaki Y; Gunji H; Kino K; Hattori T; Ishii Y; Kirimura K
    Biodegradation; 2010 Jul; 21(4):557-64. PubMed ID: 20020317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.
    Hack N; Reinwand C; Abbt-Braun G; Horn H; Frimmel FH
    J Contam Hydrol; 2015 Dec; 183():40-54. PubMed ID: 26529301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of salicylic acid by Fusarium graminearum.
    Rocheleau H; Al-Harthi R; Ouellet T
    Fungal Biol; 2019 Jan; 123(1):77-86. PubMed ID: 30654960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism.
    Zeinali M; Vossoughi M; Ardestani SK
    Chemosphere; 2008 Jun; 72(6):905-9. PubMed ID: 18471862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway.
    Zeyer J; Wasserfallen A; Timmis KN
    Appl Environ Microbiol; 1985 Aug; 50(2):447-53. PubMed ID: 4051488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450.
    Bojić M; Sedgeman CA; Nagy LD; Guengerich FP
    Eur J Pharm Sci; 2015 Jun; 73():49-56. PubMed ID: 25840124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights on the marine cytochrome P450 enzymes and their biotechnological importance.
    Sharifian S; Homaei A; Kamrani E; Etzerodt T; Patel S
    Int J Biol Macromol; 2020 Jan; 142():811-821. PubMed ID: 31622713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04.
    Nayak AS; Sanjeev Kumar S; Santosh Kumar M; Anjaneya O; Karegoudar TB
    FEMS Microbiol Lett; 2011 Jul; 320(2):128-34. PubMed ID: 21545490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism.
    Oie CS; Albaugh CE; Peyton BM
    Water Res; 2007 Mar; 41(6):1235-42. PubMed ID: 17292440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seaweeds fast EDC bioremediation: Supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants.
    Astrahan P; Korzen L; Khanin M; Sharoni Y; Israel Á
    Environ Pollut; 2021 Jun; 278():116853. PubMed ID: 33740605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.
    Fukuoka K; Ozeki Y; Kanaly RA
    Biodegradation; 2015 Sep; 26(5):359-73. PubMed ID: 26126873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3.
    Devi P; Wahidullah S; Sheikh F; Pereira R; Narkhede N; Amonkar D; Tilvi S; Meena RM
    Mar Drugs; 2017 Feb; 15(2):. PubMed ID: 28208715
    [No Abstract]   [Full Text] [Related]  

  • 19. Benz[a]anthracene biotransformation and production of ring fission products by Sphingobium sp. strain KK22.
    Kunihiro M; Ozeki Y; Nogi Y; Hamamura N; Kanaly RA
    Appl Environ Microbiol; 2013 Jul; 79(14):4410-20. PubMed ID: 23686261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the kinetics and transformation products of salicylic acid in water via ozonation.
    Hu R; Zhang L; Hu J
    Chemosphere; 2016 Jun; 153():394-404. PubMed ID: 27031802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.