These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24391811)
1. Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri. Nishiyama K; Ochiai A; Tsubokawa D; Ishihara K; Yamamoto Y; Mukai T PLoS One; 2013; 8(12):e83703. PubMed ID: 24391811 [TBL] [Abstract][Full Text] [Related]
2. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Granato D; Bergonzelli GE; Pridmore RD; Marvin L; Rouvet M; Corthésy-Theulaz IE Infect Immun; 2004 Apr; 72(4):2160-9. PubMed ID: 15039339 [TBL] [Abstract][Full Text] [Related]
3. Identification of a surface protein from Lactobacillus reuteri JCM1081 that adheres to porcine gastric mucin and human enterocyte-like HT-29 cells. Wang B; Wei H; Yuan J; Li Q; Li Y; Li N; Li J Curr Microbiol; 2008 Jul; 57(1):33-8. PubMed ID: 18379843 [TBL] [Abstract][Full Text] [Related]
4. The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. Dhanani AS; Bagchi T J Appl Microbiol; 2013 Aug; 115(2):546-54. PubMed ID: 23663754 [TBL] [Abstract][Full Text] [Related]
5. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Mukai T; Kaneko S; Matsumoto M; Ohori H Int J Food Microbiol; 2004 Feb; 90(3):357-62. PubMed ID: 14751691 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. Mukai T; Asasaka T; Sato E; Mori K; Matsumoto M; Ohori H FEMS Immunol Med Microbiol; 2002 Jan; 32(2):105-10. PubMed ID: 11821231 [TBL] [Abstract][Full Text] [Related]
7. A new approach for analyzing an adhesive bacterial protein in the mouse gastrointestinal tract using optical tissue clearing. Nishiyama K; Sugiyama M; Yamada H; Makino K; Ishihara S; Takaki T; Mukai T; Okada N Sci Rep; 2019 Mar; 9(1):4731. PubMed ID: 30894579 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterisation of elongation factor Tu, a novel protein involved in Paracoccidioides brasiliensis-host interaction. Marcos CM; de Oliveira HC; da Silva JF; Assato PA; Yamazaki DS; da Silva RA; Santos CT; Santos-Filho NA; Portuondo DL; Mendes-Giannini MJ; Fusco-Almeida AM FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27634774 [TBL] [Abstract][Full Text] [Related]
9. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Jonák J; Pokorná K; Meloun B; Karas K Eur J Biochem; 1986 Jan; 154(2):355-62. PubMed ID: 3510872 [TBL] [Abstract][Full Text] [Related]
11. A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. Barel M; Hovanessian AG; Meibom K; Briand JP; Dupuis M; Charbit A BMC Microbiol; 2008 Sep; 8():145. PubMed ID: 18789156 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the interaction between the nucleotide exchange factor EF-Ts from nematode mitochondria and elongation factor Tu. Ohtsuki T; Sakurai M; Sato A; Watanabe K Nucleic Acids Res; 2002 Dec; 30(24):5444-51. PubMed ID: 12490713 [TBL] [Abstract][Full Text] [Related]
13. Glyceraldehyde-3-Phosphate Dehydrogenase Increases the Adhesion of Deng Z; Dai T; Zhang W; Zhu J; Luo XM; Fu D; Liu J; Wang H Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371288 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of the interaction of Bifidobacterium longum NCC2705 with the intestine cells Caco-2 and identification of plasminogen receptors. Wei X; Yan X; Chen X; Yang Z; Li H; Zou D; He X; Wang S; Cui Q; Liu W; Zhurina D; Wang X; Zhao X; Huang L; Zeng M; Ye Q; Riedel CU; Yuan J J Proteomics; 2014 Aug; 108():89-98. PubMed ID: 24840471 [TBL] [Abstract][Full Text] [Related]
15. Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Rousset E; Harel J; Dubreuil JD Infect Immun; 1998 Dec; 66(12):5650-8. PubMed ID: 9826338 [TBL] [Abstract][Full Text] [Related]
16. Haemagglutination and glycolipid-binding activities of Lactobacillus reuteri. Mukai T; Kaneko S; Ohori H Lett Appl Microbiol; 1998 Sep; 27(3):130-4. PubMed ID: 9750315 [TBL] [Abstract][Full Text] [Related]
17. Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins. Gunning AP; Kavanaugh D; Thursby E; Etzold S; MacKenzie DA; Juge N Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27834807 [TBL] [Abstract][Full Text] [Related]
18. Mucin pre-cultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells. Dudík B; Kiňová Sepová H; Bilka F; Pašková Ľ; Bilková A Antonie Van Leeuwenhoek; 2020 Aug; 113(8):1191-1200. PubMed ID: 32410086 [TBL] [Abstract][Full Text] [Related]
19. EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. Murase K; Morrison KL; Tam PY; Stafford RL; Jurnak F; Weiss GA Chem Biol; 2003 Feb; 10(2):161-8. PubMed ID: 12618188 [TBL] [Abstract][Full Text] [Related]
20. Cell surface-associated protein elongation factor Tu interacts with fibronectin mediating the adhesion of Lactobacillus plantarum HC-2 to Penaeus vannamei intestinal epithelium and inhibiting the apoptosis induced by LPS and pathogen in Caco-2 cells. Du Y; Li H; Xu W; Hu X; Wu T; Chen J Int J Biol Macromol; 2023 Jan; 224():32-47. PubMed ID: 36442565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]