These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24391860)

  • 1. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron.
    Johnson CM; Fisher DJ
    PLoS One; 2013; 8(12):e83989. PubMed ID: 24391860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion.
    Weber MM; Noriea NF; Bauler LD; Lam JL; Sager J; Wesolowski J; Paumet F; Hackstadt T
    J Bacteriol; 2016 Apr; 198(8):1347-55. PubMed ID: 26883826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis of Chlamydia trachomatis Using TargeTron.
    Weber MM; Faris R
    Methods Mol Biol; 2019; 2042():165-184. PubMed ID: 31385276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane.
    Suchland RJ; Rockey DD; Bannantine JP; Stamm WE
    Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA.
    Fields KA; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposon Mutagenesis in Chlamydia trachomatis Identifies CT339 as a ComEC Homolog Important for DNA Uptake and Lateral Gene Transfer.
    LaBrie SD; Dimond ZE; Harrison KS; Baid S; Wickstrum J; Suchland RJ; Hefty PS
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a Chlamydia trachomatis early operon encoding four novel inclusion membrane proteins.
    Scidmore-Carlson MA; Shaw EI; Dooley CA; Fischer ER; Hackstadt T
    Mol Microbiol; 1999 Aug; 33(4):753-65. PubMed ID: 10447885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae.
    Filcek K; Vielfort K; Muraleedharan S; Henriksson J; Valdivia RH; Bavoil PM; Sixt BS
    PLoS One; 2019; 14(11):e0224324. PubMed ID: 31697687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions.
    Rockey DD; Viratyosin W; Bannantine JP; Suchland RJ; Stamm WE
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2497-2505. PubMed ID: 12177343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
    Key CE; Fisher DJ
    Methods Mol Biol; 2017; 1498():163-177. PubMed ID: 27709575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Deletion by Fluorescence-Reported Allelic Exchange Mutagenesis in Chlamydia trachomatis.
    Mueller KE; Wolf K; Fields KA
    mBio; 2016 Jan; 7(1):e01817-15. PubMed ID: 26787828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA.
    Cingolani G; McCauley M; Lobley A; Bryer AJ; Wesolowski J; Greco DL; Lokareddy RK; Ronzone E; Perilla JR; Paumet F
    Nat Commun; 2019 Jun; 10(1):2747. PubMed ID: 31227715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion.
    Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER
    Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations.
    Suchland RJ; Jeffrey BM; Xia M; Bhatia A; Chu HG; Rockey DD; Stamm WE
    Infect Immun; 2008 Dec; 76(12):5438-46. PubMed ID: 18852248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking.
    Richards TS; Knowlton AE; Grieshaber SS
    BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2.
    Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal IncA expression and fusogenicity of inclusions in Chlamydia trachomatis isolates with the incA I47T mutation.
    Pannekoek Y; van der Ende A; Eijk PP; van Marle J; de Witte MA; Ossewaarde JM; van den Brule AJ; Morré SA; Dankert J
    Infect Immun; 2001 Jul; 69(7):4654-6. PubMed ID: 11402010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of Transposon Mutagenesis for Chlamydia muridarum.
    Wang Y; LaBrie SD; Carrell SJ; Suchland RJ; Dimond ZE; Kwong F; Rockey DD; Hefty PS; Hybiske K
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.