BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24391911)

  • 1. Does nocturnality drive binocular vision? Octodontine rodents as a case study.
    Vega-Zuniga T; Medina FS; Fredes F; Zuniga C; Severín D; Palacios AG; Karten HJ; Mpodozis J
    PLoS One; 2013; 8(12):e84199. PubMed ID: 24391911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum.
    Vega-Zuniga T; Medina FS; Marín G; Letelier JC; Palacios AG; Němec P; Schleich CE; Mpodozis J
    Sci Rep; 2017 Feb; 7():41704. PubMed ID: 28150809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Habitat and Social Complexity on Brain Size, Brain Asymmetry and Dentate Gyrus Morphology in Two Octodontid Rodents.
    Sobrero R; Fernández-Aburto P; Ly-Prieto Á; Delgado SE; Mpodozis J; Ebensperger LA
    Brain Behav Evol; 2016; 87(1):51-64. PubMed ID: 27045373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can social behaviour drive accessory olfactory bulb asymmetries? Sister species of caviomorph rodents as a case in point.
    Fernández-Aburto P; Delgado SE; Sobrero R; Mpodozis J
    J Anat; 2020 Apr; 236(4):612-621. PubMed ID: 31797375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheel-running and rest activity pattern interaction in two octodontids (Octodon degus, Octodon bridgesi).
    Ocampo-Garcés A; Hernández F; Mena W; Palacios AG
    Biol Res; 2005; 38(2-3):299-305. PubMed ID: 16238108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology.
    Chávez AE; Bozinovic F; Peichl L; Palacios AG
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2290-6. PubMed ID: 12714673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does dominance of crossing retinal ganglion cells make the eyes cross? The temporal retina in the origin of infantile esotropia – a neuroanatomical and evolutionary analysis.
    ten Tusscher MP
    Acta Ophthalmol; 2014 Sep; 92(6):e419-23. PubMed ID: 25259397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pacemaker phase control versus masking by light: setting the circadian chronotype in dual Octodon degus.
    Vivanco P; Rol MA; Madrid JA
    Chronobiol Int; 2010 Aug; 27(7):1365-79. PubMed ID: 20795881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Period gene expression in the brain of a dual-phasing rodent, the Octodon degus.
    Otalora BB; Hagenauer MH; Rol MA; Madrid JA; Lee TM
    J Biol Rhythms; 2013 Aug; 28(4):249-61. PubMed ID: 23929552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two steady-entrainment phases and graded masking effects by light generate different circadian chronotypes in Octodon degus.
    Vivanco P; Rol MA; Madrid JA
    Chronobiol Int; 2009 Feb; 26(2):219-41. PubMed ID: 19212838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gecko vision--retinal organization, foveae and implications for binocular vision.
    Röll B
    Vision Res; 2001 Jul; 41(16):2043-56. PubMed ID: 11403789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ten-m2 is required for the generation of binocular visual circuits.
    Young TR; Bourke M; Zhou X; Oohashi T; Sawatari A; Fässler R; Leamey CA
    J Neurosci; 2013 Jul; 33(30):12490-509. PubMed ID: 23884953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What is binocular vision for? A birds' eye view.
    Martin GR
    J Vis; 2009 Oct; 9(11):14.1-19. PubMed ID: 20053077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suprachiasmatic nucleus and intergeniculate leaflet in the diurnal rodent Octodon degus: retinal projections and immunocytochemical characterization.
    Goel N; Lee TM; Smale L
    Neuroscience; 1999; 92(4):1491-509. PubMed ID: 10426502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubular eyes of deep-sea fishes: a comparative study of retinal topography.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1997; 50(6):335-57. PubMed ID: 9406644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of retinogeniculate cells in the tammar wallaby in relation to decussation at the optic chiasm.
    Wimborne BM; Mark RF; Ibbotson MR
    J Comp Neurol; 1999 Mar; 405(1):128-40. PubMed ID: 10022200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents.
    Deichler A; Carrasco D; Lopez-Jury L; Vega-Zuniga T; Márquez N; Mpodozis J; Marín GJ
    Sci Rep; 2020 Oct; 10(1):16220. PubMed ID: 33004866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation.
    Ocampo-Garcés A; Hernández F; Palacios AG
    Sleep; 2013 Aug; 36(8):1247-56. PubMed ID: 23904685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.