These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24392089)

  • 1. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.
    Haupert S; Guérard S; Peyrin F; Mitton D; Laugier P
    PLoS One; 2014; 9(1):e83599. PubMed ID: 24392089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone.
    Haupert S; Guérard S; Mitton D; Peyrin F; Laugier P
    J Mech Behav Biomed Mater; 2015 Aug; 48():210-219. PubMed ID: 25955563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone.
    Muller M; Sutin A; Guyer R; Talmant M; Laugier P; Johnson PA
    J Acoust Soc Am; 2005 Dec; 118(6):3946-52. PubMed ID: 16419838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone micro-damage assessment using non-linear resonant ultrasound spectroscopy (NRUS) techniques: a feasibility study.
    Muller M; Tencate JA; Darling TW; Sutin A; Guyer RA; Talmant M; Laugier P; Johnson PA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e245-9. PubMed ID: 16876843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdamage evaluation in human trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM).
    Zacharias K; Balabanidou E; Hatzokos I; Rekanos IT; Trochidis A
    J Biomech; 2009 Mar; 42(5):581-6. PubMed ID: 19243780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damage type and strain mode associations in human compact bone bending fatigue.
    Boyce TM; Fyhrie DP; Glotkowski MC; Radin EL; Schaffler MB
    J Orthop Res; 1998 May; 16(3):322-9. PubMed ID: 9671927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.
    Müller R; Gerber SC; Hayes WC
    Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive characterization of microdamage in cortical bone using low field pulsed NMR.
    Nicolella DP; Ni Q; Chan KS
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):383-91. PubMed ID: 21316626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
    Turnbull TL; Baumann AP; Roeder RK
    J Biomech; 2014 Sep; 47(12):3135-42. PubMed ID: 25065731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear ultrasound can detect accumulated damage in human bone.
    Muller M; Mitton D; Talmant M; Johnson P; Laugier P
    J Biomech; 2008; 41(5):1062-8. PubMed ID: 18222458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related change in the damage morphology of human cortical bone and its role in bone fragility.
    Diab T; Condon KW; Burr DB; Vashishth D
    Bone; 2006 Mar; 38(3):427-31. PubMed ID: 16260195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis.
    Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV
    J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing microcrack orientation distribution functions in osteonal bone samples.
    Wolfram U; Schwiedrzik JJ; Mirzaali MJ; Bürki A; Varga P; Olivier C; Peyrin F; Zysset PK
    J Microsc; 2016 Dec; 264(3):268-281. PubMed ID: 27421084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting microdamage in bone.
    Lee TC; Mohsin S; Taylor D; Parkesh R; Gunnlaugsson T; O'Brien FJ; Giehl M; Gowin W
    J Anat; 2003 Aug; 203(2):161-72. PubMed ID: 12924817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.