These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24392101)

  • 1. Automatic extraction of nanoparticle properties using natural language processing: NanoSifter an application to acquire PAMAM dendrimer properties.
    Jones DE; Igo S; Hurdle J; Facelli JC
    PLoS One; 2014; 9(1):e83932. PubMed ID: 24392101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Poly(amidoamine) Dendrimer/Carbon Dot Nanohybrids for Biomedical Applications.
    Guo Y; Shen M; Shi X
    Macromol Biosci; 2021 Apr; 21(4):e2100007. PubMed ID: 33615730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic abstraction of imaging observations with their characteristics from mammography reports.
    Bozkurt S; Lipson JA; Senol U; Rubin DL
    J Am Med Inform Assoc; 2015 Apr; 22(e1):e81-92. PubMed ID: 25352567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary use of electronic health records for building cohort studies through top-down information extraction.
    Kreuzthaler M; Schulz S; Berghold A
    J Biomed Inform; 2015 Feb; 53():188-95. PubMed ID: 25451102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontology-based clinical information extraction from physician's free-text notes.
    Yehia E; Boshnak H; AbdelGaber S; Abdo A; Elzanfaly DS
    J Biomed Inform; 2019 Oct; 98():103276. PubMed ID: 31473365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between PAMAM dendrimers and DOPC lipid multilayers: Membrane thinning and structural disorder.
    Fox LJ; Slastanova A; Taylor N; Wlodek M; Bikondoa O; Richardson RM; Briscoe WH
    Biochim Biophys Acta Gen Subj; 2021 Apr; 1865(4):129542. PubMed ID: 31987955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting phenotypic information from the literature via natural language processing.
    Chen L; Friedman C
    Stud Health Technol Inform; 2004; 107(Pt 2):758-62. PubMed ID: 15360914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Processing of Anatomic Pathology Reports in the Italian Language to Enhance the Reuse of Clinical Data.
    Viani N; Chiudinelli L; Tasca C; Zambelli A; Bucalo M; Ghirardi A; Barbarini N; Sfreddo E; Sacchi L; Tondini C; Bellazzi R
    Stud Health Technol Inform; 2018; 247():715-719. PubMed ID: 29678054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UMLS content views appropriate for NLP processing of the biomedical literature vs. clinical text.
    Demner-Fushman D; Mork JG; Shooshan SE; Aronson AR
    J Biomed Inform; 2010 Aug; 43(4):587-94. PubMed ID: 20152935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Text-based knowledge discovery: search and mining of life-sciences documents.
    Mack R; Hehenberger M
    Drug Discov Today; 2002 Jun; 7(11):S89-98. PubMed ID: 12047886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Automatic keyword retrieval from clinical texts: an application of natural language processing to massive data of Chilean suspected diagnosis].
    Villena F; Dunstan J
    Rev Med Chil; 2019 Oct; 147(10):1229-1238. PubMed ID: 32186630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking echocardiogram measurements for heart disease research through natural language processing.
    Patterson OV; Freiberg MS; Skanderson M; J Fodeh S; Brandt CA; DuVall SL
    BMC Cardiovasc Disord; 2017 Jun; 17(1):151. PubMed ID: 28606104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured learning for spatial information extraction from biomedical text: bacteria biotopes.
    Kordjamshidi P; Roth D; Moens MF
    BMC Bioinformatics; 2015 Apr; 16():129. PubMed ID: 25909637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of protein-protein interactions using grammatical relationship graph.
    Yu K; Lung PY; Zhao T; Zhao P; Tseng YY; Zhang J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):42. PubMed ID: 30066644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.
    Zhang X; Zhao J; Wen Y; Zhu C; Yang J; Yao F
    Carbohydr Polym; 2013 Nov; 98(2):1326-34. PubMed ID: 24053810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Technologies Review: A hybrid information retrieval framework to accelerate demand-pull innovation in biomedical engineering.
    Schmitz T; Bukowski M; Koschmieder S; Schmitz-Rode T; Farkas R
    Res Synth Methods; 2019 Sep; 10(3):420-439. PubMed ID: 30995361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic information extraction for computerized clinical guideline.
    Zhu H; Ni Y; Cai P; Cao F
    Stud Health Technol Inform; 2013; 192():1023. PubMed ID: 23920797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy.
    Li J; Liang H; Liu J; Wang Z
    Int J Pharm; 2018 Jul; 546(1-2):215-225. PubMed ID: 29787895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Text-mining approach to evaluate terms for ontology development.
    Tsoi LC; Patel R; Zhao W; Zheng WJ
    J Biomed Inform; 2009 Oct; 42(5):824-30. PubMed ID: 19318137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting temporal constraints from clinical research eligibility criteria using conditional random fields.
    Luo Z; Johnson SB; Lai AM; Weng C
    AMIA Annu Symp Proc; 2011; 2011():843-52. PubMed ID: 22195142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.