BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24392667)

  • 1. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.
    Bruschi M; Tiberti M; Guerra A; De Gioia L
    J Am Chem Soc; 2014 Feb; 136(5):1803-14. PubMed ID: 24392667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.
    Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W
    J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-induced structural changes at the nickel site of the regulatory [NiFe] hydrogenase from Ralstonia eutropha detected by X-ray absorption spectroscopy.
    Haumann M; Porthun A; Buhrke T; Liebisch P; Meyer-Klaucke W; Friedrich B; Dau H
    Biochemistry; 2003 Sep; 42(37):11004-15. PubMed ID: 12974636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT Investigation of H2 activation by [M(NHPnPr3)('S3')] (M = Ni, Pd). Insight into key factors relevant to the design of hydrogenase functional models.
    Zampella G; Bruschi M; Fantucci P; De Gioia L
    J Am Chem Soc; 2005 Sep; 127(38):13180-9. PubMed ID: 16173745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase.
    Tai H; Nishikawa K; Suzuki M; Higuchi Y; Hirota S
    Angew Chem Int Ed Engl; 2014 Dec; 53(50):13817-20. PubMed ID: 25297065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A third type of hydrogenase catalyzing H2 activation.
    Shima S; Thauer RK
    Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bonding effect between active site and protein environment on catalysis performance in H
    Qiu S; Azofra LM; MacFarlane DR; Sun C
    Phys Chem Chem Phys; 2018 Feb; 20(9):6735-6743. PubMed ID: 29457815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state).
    Ogata H; Kellers P; Lubitz W
    J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases.
    Ilina Y; Lorent C; Katz S; Jeoung JH; Shima S; Horch M; Zebger I; Dobbek H
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18710-18714. PubMed ID: 31591784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect.
    Liu P; Rodriguez JA
    J Am Chem Soc; 2005 Oct; 127(42):14871-8. PubMed ID: 16231942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of aerobic and anaerobic oxidative inactivation of the [NiFe]-hydrogenase active site.
    Breglia R; Greco C; Fantucci P; De Gioia L; Bruschi M
    Phys Chem Chem Phys; 2018 Jan; 20(3):1693-1706. PubMed ID: 29264600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H
    Dong G; Phung QM; Hallaert SD; Pierloot K; Ryde U
    Phys Chem Chem Phys; 2017 Apr; 19(16):10590-10601. PubMed ID: 28397891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step.
    Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V
    Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study.
    Greco C
    Dalton Trans; 2013 Oct; 42(38):13845-54. PubMed ID: 23921968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
    Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S
    Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II).
    Pardo A; De Lacey AL; Fernández VM; Fan HJ; Fan Y; Hall MB
    J Biol Inorg Chem; 2006 Apr; 11(3):286-306. PubMed ID: 16511689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.
    Armstrong FA; Albracht SP
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):937-54; discussion 1035-40. PubMed ID: 15991402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.