BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24392697)

  • 1. Turning off AKT: PHLPP as a drug target.
    Newton AC; Trotman LC
    Annu Rev Pharmacol Toxicol; 2014; 54():537-58. PubMed ID: 24392697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling.
    Baffi TR; Cohen-Katsenelson K; Newton AC
    Annu Rev Pharmacol Toxicol; 2021 Jan; 61():723-743. PubMed ID: 32997603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart.
    Lemoine KA; Fassas JM; Ohannesian SH; Purcell NH
    Cell Signal; 2021 Oct; 86():110097. PubMed ID: 34320369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mislocalization of the E3 ligase, β-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt.
    Warfel NA; Niederst M; Stevens MW; Brennan PM; Frame MC; Newton AC
    J Biol Chem; 2011 Jun; 286(22):19777-88. PubMed ID: 21454620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase Acts as a Tumor Suppressor in Oral Squamous Cell Carcinoma.
    Etemad-Moghadam S; Mohammadpour H; Emami Razavi A; Alaeddini M
    Appl Immunohistochem Mol Morphol; 2024 May-Jun 01; 32(5):249-253. PubMed ID: 38602289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guide to virtual screening: application to the Akt phosphatase PHLPP.
    Sinko W; Sierecki E; de Oliveira CA; McCammon JA
    Methods Mol Biol; 2012; 819():561-73. PubMed ID: 22183558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Akt-ing up on SRPK1: oncogene or tumor suppressor?
    Toker A; Chin YR
    Mol Cell; 2014 May; 54(3):329-30. PubMed ID: 24813709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palmitoylated SCP1 is targeted to the plasma membrane and negatively regulates angiogenesis.
    Liao P; Wang W; Li Y; Wang R; Jin J; Pang W; Chen Y; Shen M; Wang X; Jiang D; Pang J; Liu M; Lin X; Feng XH; Wang P; Ge X
    Elife; 2017 Mar; 6():. PubMed ID: 28440748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHLPPing through history: a decade in the life of PHLPP phosphatases.
    Grzechnik AT; Newton AC
    Biochem Soc Trans; 2016 Dec; 44(6):1675-1682. PubMed ID: 27913677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output.
    Reyes G; Niederst M; Cohen-Katsenelson K; Stender JD; Kunkel MT; Chen M; Brognard J; Sierecki E; Gao T; Nowak DG; Trotman LC; Glass CK; Newton AC
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):E3957-65. PubMed ID: 25201979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells.
    Ghalali A; Ye ZW; Högberg J; Stenius U
    J Biol Chem; 2014 Apr; 289(17):11601-11616. PubMed ID: 24599953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase.
    Sierecki E; Newton AC
    Biochemistry; 2014 Jun; 53(24):3971-81. PubMed ID: 24892992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice.
    Li X; Stevens PD; Liu J; Yang H; Wang W; Wang C; Zeng Z; Schmidt MD; Yang M; Lee EY; Gao T
    Gastroenterology; 2014 May; 146(5):1301-12.e1-10. PubMed ID: 24530606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells.
    Smith AJ; Wen YA; Stevens PD; Liu J; Wang C; Gao T
    Oncotarget; 2016 Feb; 7(7):7801-15. PubMed ID: 26760962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHLPP phosphatases as a therapeutic target in insulin resistance-related diseases.
    Hribal ML; Mancuso E; Spiga R; Mannino GC; Fiorentino TV; Andreozzi F; Sesti G
    Expert Opin Ther Targets; 2016 Jun; 20(6):663-75. PubMed ID: 26652182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2.
    Nowak DG; Cho H; Herzka T; Watrud K; DeMarco DV; Wang VM; Senturk S; Fellmann C; Ding D; Beinortas T; Kleinman D; Chen M; Sordella R; Wilkinson JE; Castillo-Martin M; Cordon-Cardo C; Robinson BD; Trotman LC
    Cancer Discov; 2015 Jun; 5(6):636-51. PubMed ID: 25829425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein phosphatase PHLPP induces cell apoptosis and exerts anticancer activity by inhibiting Survivin phosphorylation and nuclear export in gallbladder cancer.
    Qiu Y; Li X; Yi B; Zheng J; Peng Z; Zhang Z; Wu M; Shen F; Su C
    Oncotarget; 2015 Aug; 6(22):19148-62. PubMed ID: 25895131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid in vivo validation of candidate drivers derived from the PTEN-mutant prostate metastasis genome.
    Cho H; Herzka T; Stahlhut C; Watrud K; Robinson BD; Trotman LC
    Methods; 2015 May; 77-78():197-204. PubMed ID: 25592467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes.
    Mathur A; Pandey VK; Kakkar P
    J Endocrinol; 2017 Jun; 233(3):R185-R198. PubMed ID: 28428363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart.
    Xing Y; Sun W; Wang Y; Gao F; Ma H
    Aging (Albany NY); 2016 May; 8(5):873-88. PubMed ID: 27019292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.