These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
671 related articles for article (PubMed ID: 24392923)
1. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Khabbaz SE; Abbasi PA Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923 [TBL] [Abstract][Full Text] [Related]
2. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. Georgakopoulos DG; Fiddaman P; Leifert C; Malathrakis NE J Appl Microbiol; 2002; 92(6):1078-86. PubMed ID: 12010548 [TBL] [Abstract][Full Text] [Related]
3. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Amer GA; Utkhede RS Can J Microbiol; 2000 Sep; 46(9):809-16. PubMed ID: 11006841 [TBL] [Abstract][Full Text] [Related]
4. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran. Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):943-52. PubMed ID: 17390843 [TBL] [Abstract][Full Text] [Related]
5. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624 [TBL] [Abstract][Full Text] [Related]
6. Influence of Soil Temperature and Matric Potential on Sugar Beet Seedling Colonization and Suppression of Pythium Damping-Off by the Antagonistic Bacteria Pseudomonas fluorescens and Bacillus subtilis. Schmidt CS; Agostini F; Leifert C; Killham K; Mullins CE Phytopathology; 2004 Apr; 94(4):351-63. PubMed ID: 18944111 [TBL] [Abstract][Full Text] [Related]
7. Seed biopriming with cyanobacterial extracts as an eco-friendly strategy to control damping off caused by Pythium ultimum in seedbeds. Toribio AJ; Jurado MM; Suárez-Estrella F; López MJ; López-González JA; Moreno J Microbiol Res; 2021 Jul; 248():126766. PubMed ID: 33873139 [TBL] [Abstract][Full Text] [Related]
8. Seed Treatment with Phosphonate (AG3) Suppresses Pythium Damping-off of Cucumber Seedlings. Abbasi PA; Lazarovits G Plant Dis; 2006 Apr; 90(4):459-464. PubMed ID: 30786594 [TBL] [Abstract][Full Text] [Related]
9. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi. Ramzan N; Noreen N; Perveen Z; Shahzad S J Sci Food Agric; 2016 Aug; 96(11):3694-700. PubMed ID: 26619828 [TBL] [Abstract][Full Text] [Related]
10. Detection of high concentrations of organic acids in fish emulsion and their role in pathogen or disease suppression. Abbasi PA; Lazarovits G; Jabaji-Hare S Phytopathology; 2009 Mar; 99(3):274-81. PubMed ID: 19203280 [TBL] [Abstract][Full Text] [Related]
11. Seed-colonizing microbes from municipal biosolids compost suppress Pythium ultimum damping-off on different plant species. Chen MH; Nelson EB Phytopathology; 2008 Sep; 98(9):1012-8. PubMed ID: 18943739 [TBL] [Abstract][Full Text] [Related]
12. Seed-colonizing bacterial communities associated with the suppression of Pythium seedling disease in a municipal biosolids compost. Chen MH; Jack AL; McGuire IC; Nelson EB Phytopathology; 2012 May; 102(5):478-89. PubMed ID: 22352305 [TBL] [Abstract][Full Text] [Related]
13. Mutation of rpiA in Enterobacter cloacae decreases seed and root colonization and biocontrol of damping-off caused by Pythium ultimum on cucumber. Lohrke SM; Dery PD; Li W; Reedy R; Kobayashi DY; Roberts DR Mol Plant Microbe Interact; 2002 Aug; 15(8):817-25. PubMed ID: 12182339 [TBL] [Abstract][Full Text] [Related]
14. Seed Treatment Using Pre-infiltration and Biocontrol Agents to Reduce Damping-off of Corn Caused by Species of Pythium and Fusarium. Mao W; Lumsden RD; Lewis JA; Hebbar PK Plant Dis; 1998 Mar; 82(3):294-299. PubMed ID: 30856860 [TBL] [Abstract][Full Text] [Related]
15. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Yuan WM; Crawford DL Appl Environ Microbiol; 1995 Aug; 61(8):3119-28. PubMed ID: 7487043 [TBL] [Abstract][Full Text] [Related]
16. Short-term fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. He M; Tian G; Semenov AM; van Bruggen AH Phytopathology; 2012 Apr; 102(4):413-20. PubMed ID: 22150210 [TBL] [Abstract][Full Text] [Related]
17. Seed Treatment with a Fungal or a Bacterial Antagonist for Reducing Corn Damping-off Caused by Species of Pythium and Fusarium. Mao W; Lewis JA; Hebbar PK; Lumsden RD Plant Dis; 1997 May; 81(5):450-454. PubMed ID: 30861920 [TBL] [Abstract][Full Text] [Related]
18. Reduction of Pythium Damping-Off in Soybean by Biocontrol Seed Treatment. Pimentel MF; Arnao E; Warner AJ; Rocha LF; Subedi A; Elsharif N; Chilvers MI; Matthiesen R; Robertson AE; Bradley CA; Neves DL; Pedersen DK; Reuter-Carlson U; Lacey JV; Bond JP; Fakhoury AM Plant Dis; 2022 Sep; 106(9):2403-2414. PubMed ID: 35171634 [No Abstract] [Full Text] [Related]
19. Evaluation of soil microorganisms with inhibitory activity against Rhizoctonia solani causal agent of the damping-off of canola. Ciampi L; Tewari JP Arch Biol Med Exp; 1990 Oct; 23(2):101-12. PubMed ID: 2133515 [TBL] [Abstract][Full Text] [Related]
20. Seed Rot and Damping-off of Alfalfa in Minnesota Caused by Pythium and Fusarium Species. Berg LE; Miller SS; Dornbusch MR; Samac DA Plant Dis; 2017 Nov; 101(11):1860-1867. PubMed ID: 30677318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]