These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 24392929)
1. Prediction of colloidal stability of high concentration protein formulations. Garidel P; Blume A; Wagner M Pharm Dev Technol; 2015 May; 20(3):367-74. PubMed ID: 24392929 [TBL] [Abstract][Full Text] [Related]
2. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. Raut AS; Kalonia DS J Pharm Sci; 2015 Apr; 104(4):1263-74. PubMed ID: 25556561 [TBL] [Abstract][Full Text] [Related]
3. Colloidal interactions between monoclonal antibodies in aqueous solutions. Arzenšek D; Kuzman D; Podgornik R J Colloid Interface Sci; 2012 Oct; 384(1):207-16. PubMed ID: 22840854 [TBL] [Abstract][Full Text] [Related]
4. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions. Raut AS; Kalonia DS Mol Pharm; 2016 May; 13(5):1431-44. PubMed ID: 27017836 [TBL] [Abstract][Full Text] [Related]
5. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering. Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466 [TBL] [Abstract][Full Text] [Related]
6. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody. Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the weak protein-protein interaction mechanisms behind the liquid-liquid phase separation of a mAb solution by different types of additives. Wu G; Wang S; Tian Z; Zhang N; Sheng H; Dai W; Qian F Eur J Pharm Biopharm; 2017 Nov; 120():1-8. PubMed ID: 28754261 [TBL] [Abstract][Full Text] [Related]
8. The role of electrostatics in protein-protein interactions of a monoclonal antibody. Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385 [TBL] [Abstract][Full Text] [Related]
9. Temperature-ramped studies on the aggregation, unfolding, and interaction of a therapeutic monoclonal antibody. Menzen T; Friess W J Pharm Sci; 2014 Feb; 103(2):445-55. PubMed ID: 24382634 [TBL] [Abstract][Full Text] [Related]
10. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - prediction of viscosity through protein-protein interaction measurements. Neergaard MS; Kalonia DS; Parshad H; Nielsen AD; Møller EH; van de Weert M Eur J Pharm Sci; 2013 Jun; 49(3):400-10. PubMed ID: 23624326 [TBL] [Abstract][Full Text] [Related]
11. Specific interactions in high concentration antibody solutions resulting in high viscosity. Yadav S; Liu J; Shire SJ; Kalonia DS J Pharm Sci; 2010 Mar; 99(3):1152-68. PubMed ID: 19705420 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation. Thompson RW; Latypov RF; Wang Y; Lomakin A; Meyer JA; Vunnum S; Benedek GB J Chem Phys; 2016 Nov; 145(18):185101. PubMed ID: 27846698 [TBL] [Abstract][Full Text] [Related]
13. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies? Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887 [TBL] [Abstract][Full Text] [Related]
14. Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength. Sule SV; Cheung JK; Antochshuk V; Bhalla AS; Narasimhan C; Blaisdell S; Shameem M; Tessier PM Mol Pharm; 2012 Apr; 9(4):744-51. PubMed ID: 22221144 [TBL] [Abstract][Full Text] [Related]
15. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. Liu J; Nguyen MD; Andya JD; Shire SJ J Pharm Sci; 2005 Sep; 94(9):1928-40. PubMed ID: 16052543 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic rheology of a monoclonal antibody (IgG2) solution: implications for physical stability of proteins in high concentration formulations. Saluja A; Badkar AV; Zeng DL; Kalonia DS J Pharm Sci; 2007 Dec; 96(12):3181-95. PubMed ID: 17588261 [TBL] [Abstract][Full Text] [Related]
17. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications. Bahrenburg S; Karow AR; Garidel P Biotechnol J; 2015 Apr; 10(4):610-22. PubMed ID: 25641961 [TBL] [Abstract][Full Text] [Related]
18. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. Neergaard MS; Nielsen AD; Parshad H; Van De Weert M J Pharm Sci; 2014 Jan; 103(1):115-27. PubMed ID: 24282022 [TBL] [Abstract][Full Text] [Related]
19. Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation. Mason BD; Zhang L; Remmele RL; Zhang J J Pharm Sci; 2011 Nov; 100(11):4587-96. PubMed ID: 21638285 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Blaffert J; Haeri HH; Blech M; Hinderberger D; Garidel P Anal Biochem; 2018 Nov; 561-562():70-88. PubMed ID: 30243977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]