These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24393197)

  • 21. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.
    Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC
    Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.
    Oud B; Flores CL; Gancedo C; Zhang X; Trueheart J; Daran JM; Pronk JT; van Maris AJ
    Microb Cell Fact; 2012 Sep; 11():131. PubMed ID: 22978798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes.
    Espinosa-Cantú A; Ascencio D; Herrera-Basurto S; Xu J; Roguev A; Krogan NJ; DeLuna A
    Genetics; 2018 Jan; 208(1):419-431. PubMed ID: 29127264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions.
    Qian J; Dolled-Filhart M; Lin J; Yu H; Gerstein M
    J Mol Biol; 2001 Dec; 314(5):1053-66. PubMed ID: 11743722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feedback regulation of Ras2 guanine nucleotide exchange factor (Ras2-GEF) activity of Cdc25p by Cdc25p phosphorylation in the yeast Saccharomyces cerevisiae.
    Jian D; Aili Z; Xiaojia B; Huansheng Z; Yun H
    FEBS Lett; 2010 Dec; 584(23):4745-50. PubMed ID: 21073870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.
    La Ferla M; Mercatanti A; Rocchi G; Lodovichi S; Cervelli T; Pignata L; Caligo MA; Galli A
    Mutat Res; 2015 Apr; 774():14-24. PubMed ID: 25779917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J
    J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypoglycosylation in the alg12delta yeast mutant destabilizes protease A and causes proteolytic loss of external invertase.
    Cipollo JF; Trimble RB
    Glycobiology; 2002 Nov; 12(11):30G-3G. PubMed ID: 12460938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of Mitotic Exit in Saccharomyces cerevisiae.
    Baro B; Queralt E; Monje-Casas F
    Methods Mol Biol; 2017; 1505():3-17. PubMed ID: 27826852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mad2 and Mad3 cooperate to arrest budding yeast in mitosis.
    Lau DT; Murray AW
    Curr Biol; 2012 Feb; 22(3):180-90. PubMed ID: 22209528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.
    Nariai N; Kim S; Imoto S; Miyano S
    Pac Symp Biocomput; 2004; ():336-47. PubMed ID: 14992515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in vacuolar protease activities during synchronous culture of Saccharomyces cerevisiae.
    Tanimizu N; Hayashi R
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1526-7. PubMed ID: 8987609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An assay for functional xylose transporters in Saccharomyces cerevisiae.
    Wang C; Shen Y; Hou J; Suo F; Bao X
    Anal Biochem; 2013 Nov; 442(2):241-8. PubMed ID: 23928049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New weakly expressed cell cycle-regulated genes in yeast.
    de Lichtenberg U; Wernersson R; Jensen TS; Nielsen HB; Fausbøll A; Schmidt P; Hansen FB; Knudsen S; Brunak S
    Yeast; 2005 Nov; 22(15):1191-201. PubMed ID: 16278933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane potential independent transport of NH
    Cueto-Rojas HF; Milne N; van Helmond W; Pieterse MM; van Maris AJA; Daran JM; Wahl SA
    BMC Syst Biol; 2017 Apr; 11(1):49. PubMed ID: 28412970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast.
    Hu LL; Feng KY; Cai YD; Chou KC
    Protein Pept Lett; 2012 Jun; 19(6):644-51. PubMed ID: 22519536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting genetic interactions using parallel evolution in experimental populations.
    Fisher KJ; Kryazhimskiy S; Lang GI
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1777):20180237. PubMed ID: 31154981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae.
    Reguly T; Breitkreutz A; Boucher L; Breitkreutz BJ; Hon GC; Myers CL; Parsons A; Friesen H; Oughtred R; Tong A; Stark C; Ho Y; Botstein D; Andrews B; Boone C; Troyanskya OG; Ideker T; Dolinski K; Batada NN; Tyers M
    J Biol; 2006; 5(4):11. PubMed ID: 16762047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.