These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 24393360)
21. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus. Ding LN; Guo XJ; Li M; Fu ZL; Yan SZ; Zhu KM; Wang Z; Tan XL Plant Cell Rep; 2019 Feb; 38(2):243-253. PubMed ID: 30535511 [TBL] [Abstract][Full Text] [Related]
22. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031 [TBL] [Abstract][Full Text] [Related]
23. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545 [TBL] [Abstract][Full Text] [Related]
24. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. Zhang Z; Dunwell JM; Zhang YM BMC Plant Biol; 2018 Dec; 18(1):328. PubMed ID: 30514240 [TBL] [Abstract][Full Text] [Related]
25. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529 [TBL] [Abstract][Full Text] [Related]
26. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Li RJ; Wang HZ; Mao H; Lu YT; Hua W Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595 [TBL] [Abstract][Full Text] [Related]
27. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus. Li Q; Shao J; Tang S; Shen Q; Wang T; Chen W; Hong Y Front Plant Sci; 2015; 6():1015. PubMed ID: 26635841 [TBL] [Abstract][Full Text] [Related]
28. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
29. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Vigeolas H; Waldeck P; Zank T; Geigenberger P Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545 [TBL] [Abstract][Full Text] [Related]
30. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Hua W; Li RJ; Zhan GM; Liu J; Li J; Wang XF; Liu GH; Wang HZ Plant J; 2012 Feb; 69(3):432-44. PubMed ID: 21954986 [TBL] [Abstract][Full Text] [Related]
31. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Shi J; Lang C; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G Biochem Biophys Res Commun; 2015 Oct; 466(3):518-22. PubMed ID: 26381181 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
33. Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Su ZZ; Wang T; Shrivastava N; Chen YY; Liu X; Sun C; Yin Y; Gao QK; Lou BG Microbiol Res; 2017 Jun; 199():29-39. PubMed ID: 28454707 [TBL] [Abstract][Full Text] [Related]
35. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Liu F; Xia Y; Wu L; Fu D; Hayward A; Luo J; Yan X; Xiong X; Fu P; Wu G; Lu C Gene; 2015 Feb; 557(2):163-71. PubMed ID: 25523093 [TBL] [Abstract][Full Text] [Related]
37. Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape (Brassica napus L.) in reproductive stage. Wang C; Yang J; Chen W; Zhao X; Wang Z Sci Rep; 2023 Mar; 13(1):4721. PubMed ID: 36959272 [TBL] [Abstract][Full Text] [Related]
38. Transcriptomic Analysis of the Reduction in Seed Oil Content through Increased Nitrogen Application Rate in Rapeseed ( Hao P; Ren Y; Lin B; Yi K; Huang L; Li X; Jiang L; Hua S Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003410 [TBL] [Abstract][Full Text] [Related]
39. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Ruuska SA; Schwender J; Ohlrogge JB Plant Physiol; 2004 Sep; 136(1):2700-9. PubMed ID: 15347783 [TBL] [Abstract][Full Text] [Related]
40. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]