BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24393396)

  • 1. Improved asymmetry prediction for short interfering RNAs.
    Malefyt AP; Wu M; Vocelle DB; Kappes SJ; Lindeman SD; Chan C; Walton SP
    FEBS J; 2014 Jan; 281(1):320-30. PubMed ID: 24393396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing highly active siRNAs for therapeutic applications.
    Walton SP; Wu M; Gredell JA; Chan C
    FEBS J; 2010 Dec; 277(23):4806-13. PubMed ID: 21078115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of duplex stability and terminal asymmetry for shRNA design.
    Matveeva OV; Kang Y; Spiridonov AN; Saetrom P; Nemtsov VA; Ogurtsov AY; Nechipurenko YD; Shabalina SA
    PLoS One; 2010 Apr; 5(4):e10180. PubMed ID: 20422034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila.
    Preall JB; He Z; Gorra JM; Sontheimer EJ
    Curr Biol; 2006 Mar; 16(5):530-5. PubMed ID: 16527750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference.
    Angart PA; Carlson RJ; Adu-Berchie K; Walton SP
    Nucleic Acid Ther; 2016 Oct; 26(5):309-317. PubMed ID: 27399870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longer 19-base pair short interfering RNA duplexes rather than shorter duplexes trigger RNA interference.
    Sierant M; Kazmierczak-Baranska J; Paduszynska A; Sobczak M; Pietkiewicz A; Nawrot B
    Oligonucleotides; 2010 Aug; 20(4):199-206. PubMed ID: 20575617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
    Gredell JA; Berger AK; Walton SP
    Biotechnol Bioeng; 2008 Jul; 100(4):744-55. PubMed ID: 18306428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency.
    Patzel V; Rutz S; Dietrich I; Köberle C; Scheffold A; Kaufmann SH
    Nat Biotechnol; 2005 Nov; 23(11):1440-4. PubMed ID: 16258545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific residues at every third position of siRNA shape its efficient RNAi activity.
    Katoh T; Suzuki T
    Nucleic Acids Res; 2007; 35(4):e27. PubMed ID: 17259216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational models with thermodynamic and composition features improve siRNA design.
    Shabalina SA; Spiridonov AN; Ogurtsov AY
    BMC Bioinformatics; 2006 Feb; 7():65. PubMed ID: 16472402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular dynamics of antisense oligonucleotides and short interfering RNAs.
    Lee LK; Dunham BM; Li Z; Roth CM
    Ann N Y Acad Sci; 2006 Oct; 1082():47-51. PubMed ID: 17145924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.
    Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T
    Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level.
    He F; Han Y; Gong J; Song J; Wang H; Li Y
    Sci Rep; 2017 Mar; 7():44836. PubMed ID: 28317874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient prediction methods for selecting effective siRNA sequences.
    Takasaki S
    Comput Biol Med; 2010 Feb; 40(2):149-58. PubMed ID: 20022002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved serum stability and biophysical properties of siRNAs following chemical modifications.
    Cho IS; Kim J; Lim DH; Ahn HC; Kim H; Lee KB; Lee YS
    Biotechnol Lett; 2008 Nov; 30(11):1901-8. PubMed ID: 18575806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of nuclease-resistant fork-like small interfering RNA (fsiRNA).
    Chernolovskaya EL; Zenkova MA
    Methods Mol Biol; 2013; 942():153-68. PubMed ID: 23027050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both strands of siRNA have potential to guide posttranscriptional gene silencing in mammalian cells.
    Wei JX; Yang J; Sun JF; Jia LT; Zhang Y; Zhang HZ; Li X; Meng YL; Yao LB; Yang AG
    PLoS One; 2009; 4(4):e5382. PubMed ID: 19401777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.
    Tsai WH; Chang WT
    Methods Mol Biol; 2014; 1101():321-38. PubMed ID: 24233788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing.
    Choi I; Cho BR; Kim D; Miyagawa S; Kubo T; Kim JY; Park CG; Hwang WS; Lee JS; Ahn C
    J Biotechnol; 2005 Nov; 120(3):251-61. PubMed ID: 16095743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise and efficient siRNA design: a key point in competent gene silencing.
    Fakhr E; Zare F; Teimoori-Toolabi L
    Cancer Gene Ther; 2016 Apr; 23(4):73-82. PubMed ID: 26987292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.