BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24393546)

  • 1. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris.
    Park JY; Oh YK; Lee JS; Lee K; Jeong MJ; Choi SA
    Bioresour Technol; 2014 Feb; 153():408-12. PubMed ID: 24393546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris.
    Park JY; Nam B; Choi SA; Oh YK; Lee JS
    Bioresour Technol; 2014 Aug; 166():620-4. PubMed ID: 24929300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid.
    Park JY; Choi SA; Jeong MJ; Nam B; Oh YK; Lee JS
    Bioresour Technol; 2014 Jun; 162():379-83. PubMed ID: 24785789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.
    Kwon EE; Jeon YJ; Yi H
    Bioresour Technol; 2013 Feb; 129():672-5. PubMed ID: 23294646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced isolation of lipids from microalgal biomass with high water content for biodiesel production.
    Alam MA; Wu J; Xu J; Wang Z
    Bioresour Technol; 2019 Nov; 291():121834. PubMed ID: 31371157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.
    Takisawa K; Kanemoto K; Kartikawati M; Kitamura Y
    Bioresour Technol; 2013 Dec; 149():16-21. PubMed ID: 24080318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.
    Choi SA; Jung JY; Kim K; Lee JS; Kwon JH; Kim SW; Yang JW; Park JY
    Bioresour Technol; 2014 Jun; 161():469-72. PubMed ID: 24755396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.
    Huang Y; Hong A; Zhang D; Li L
    Environ Technol; 2014; 35(5-8):931-7. PubMed ID: 24645476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-mediated extraction of lipids from algal biomass.
    Kim YH; Choi YK; Park J; Lee S; Yang YH; Kim HJ; Park TJ; Hwan Kim Y; Lee SH
    Bioresour Technol; 2012 Apr; 109():312-5. PubMed ID: 21601447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids.
    Picó EA; López C; Cruz-Izquierdo Á; Munarriz M; Iruretagoyena FJ; Serra JL; Llama MJ
    J Biosci Bioeng; 2018 Oct; 126(4):451-457. PubMed ID: 29764765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.
    Sharma AK; Sahoo PK; Singhal S; Joshi G
    Bioresour Technol; 2016 Sep; 216():793-800. PubMed ID: 27318156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.
    Hussain J; Liu Y; Lopes WA; Druzian JI; Souza CO; Carvalho GC; Nascimento IA; Liao W
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3048-57. PubMed ID: 25588528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.
    Cheirsilp B; Suwannarat W; Niyomdecha R
    N Biotechnol; 2011 Jul; 28(4):362-8. PubMed ID: 21255692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.
    Shen XF; Chu FF; Lam PK; Zeng RJ
    Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of high pressure steaming (HPS) as a thermal treatment for lipid extraction from Chlorella vulgaris.
    Aguirre AM; Bassi A
    Bioresour Technol; 2014 Jul; 164():136-42. PubMed ID: 24852645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-purity biodiesel production from microalgae and added-value lipid extraction: a new process.
    Veillette M; Giroir-Fendler A; Faucheux N; Heitz M
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):109-19. PubMed ID: 24859519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.